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Abstract

In this paper, we introduce a kernel estimator for the finite-dimensional parameter of a partially linear
additive model. Under some regularity conditions, we establish n'/2-consistency and asymptotic normality
of the estimator. Unlike existing kernel-based estimators: Fan et al. (1998. Ann. Statist. 26, 943-971) and
Fan and Li (2003. Statist. Sinica 13, 739-762) our estimator attains the semiparametric efficiency bound of
the partially linear additive model under homoscedastic errors. We also show that when the true
specification is the partially linear additive model, the proposed estimator is asymptotically more efficient
than an estimator that ignores the additive structure.
© 2005 Elsevier B.V. All rights reserved.

Keywords.: Additivity; Kernel; Partially linear additive model; Semiparametric efficient

1. Introduction

The partially linear additive model (hereafter PLAM) has the following form:
Yi=po+ Xif+mi(Zi)+ -+ my(Zy) +u; (i=1,...,n), )

where Y; is a scalar dependent variable, X; is a p x 1 vector of explanatory variables, f =
By ﬁp)’ isa p x 1 vector of unknown parameters, f; is a scalar parameter, Z; = (Z;,..., Zy)
is a ¢ x 1 vector of explanatory variables, m(-),...,my(-) are unknown real-valued smooth
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functions, and wu; is an unobservable random variable that satisfies F[u;|X;, Z;] =0. The
distribution of the regressors (X, Z) is left completely unspecified.

The PLAM is particularly attractive for the following reasons. On the one hand, with respect to
the pure additive model,

Yi=PBo+mi(Zi)+ - +my(Zy) + us, )

the PLAM provides considerable flexibility by allowing interaction terms among the elements of
Z enter as the linear part of the model. This is possible as the PLAM permits X; to be a
deterministic, but non-additive function of (Zy;,.. ., Z,). Furthermore, the PLAM allows a subset
or all of the variables in X to be discrete, while pure additive models admit continuous variables
only. On the other hand, compared to the partially linear model with non-structured non-
parametric component, i.e.

Yl-:X;ﬂ+m(21i,...,qu)+uia 3)

the PLAM has more explicit non-parametric components that can be estimated with a one-
dimensional non-parametric rate and hence avoid the so-called curse of dimensionality (Stone,
1985, 1986). Furthermore, when the true data generating model is PLAM, simply using model (3)
(i.e. ignore the additivity of m(-)) to estimate § can lead to an inefficient estimate of 5. Note also
that model (3) does not allow the intercept f,; only “‘slope’ coefficients can be estimated.

In the context of (3), estimation of § has been the subject of considerable study (see, Hérdle et
al., 2000). However, only few results are available for the PLAM. This paper presents a kernel-
based estimator for the S of the PLAM that is shown to be n'/?-consistent and asymptotically
normal. We also show that the proposed estimator which is designed to exploit additivity is
asymptotically more efficient than an estimator that ignores the additive structure. To the best of
our knowledge, there are two kernel-based estimators for estimating the § of PLAM; one is by
Fan et al. (1998) and the other by Fan and Li (2003). When compared with the aforementioned
kernel estimators, there are at least two advantages to using the proposed estimator. First, when
the error u; is conditional homoscedastic, our estimator attains the semiparametric efficiency
bound of the PLAM; see Chamberlain (1992) on the efficiency bound for PLAM type
specifications. Recently, Li (2002) also proposed a series-based estimator (non-kernel type) of f8
that achieves the semiparametric efficiency bound of the PLAM under homoscedastic errors.
Second, our estimator reduces the computational requirement by order of the sample size n. From
a practical stand point, this computational advantage can be very significant when # is large and/
or when implementing computer-intensive methods such as bootstrap or cross-validation.

2. Description of the estimator

Consider the model 4; = H(A)(Z ;) + v; where A is a vector- or real-valued dependent variable, Z
is a g x 1 vector of explanatory variables, 0¥ (z) = E[4,|Z; = z] is an unknown vector- or real-
valued smooth function and v; is an unobservable noise that satisfies F[v;|Z;] = 0. Following Stone
(1985), we define additivity as follows: The function 8“Y(z) is said to belong to an additive class of
functions # (0“(-) € #)if 00(z) = 01"(z)) + - - - + 00(z,), and E[0{"(z))] = O for all j = 1,....q.
When 0“(.) is vector valued, we say 0“0(.) e J if each component‘ of 6“Y(.) belongs to #.
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Further, let 0“9 (z) = H(IA*)(Zl) +-- 4 ijA*)(zq) be a function chosen subject to the constraints
[0 (z)] = 0 (for all j = 1,...,q) to minimize

E[(0“D¢) — 0“0 () — 0“9 ()1, “4)
Then, we say 0“(.) is the closest (best) additive approximation to 0“Y(-) in L,. Stone (1985)
proved the existence of 0“¥)(.) that satisfies (4) when 0“(-) is real valued. For j=1,...,q, let the
vector W; denote the set of all Z variables excluding Z;, i.e. W; =(Zy,...,Zj—1,Zj41,. .. ,Zq)/.
Define ' '

p-(z)p,,(W))

Pz, W)
where p_(-) and p,(-) are the density functions of Z; and W), respectively, and p(-) is the joint
probability function of Z = (Z;, W)). Let h](.A)(zj) = E[¢(zj, wj)A|z;]. It is easy to show that

h]('A)(Z]') = / G(A)(Z)pw(wj) de (] =1..., q)’ (5)

where we have used E[¢(z;, wj)v|z;] = 0. We can observe from (5) that h(lA)(zl), ... ,th)(zq) are the
L,(Q) (with O being a product probability measure) projections of 6“(z) onto the space functions
of zy,...,z,, respectively. Therefore, as per the definition of additivity, we may define the sum

Pz, wy) =

H(2) = i W), (6)

=1
as the best additive approximation to the function 0“9(z), i.e.

E([0) = K@U E) = KOG = il B09E) = 0@N0 @) - 061 (D)
0“4 e g

In practice, the conditions [E[h;A)(zj)] =0( =1,...,q) are easy to impose. When 0“(.) is in fact
additive (0() € #), for all j=1,...,q, h"(z)) = 01(z)). Hence, h(z) = 0“)(z). Kim et al.
(1999) exploited this property and used hj(A)(z,) in identifying the additive components in the
context of the pure additive model (2).

In what follows, we extend the foregoing discussion to PLAM (1). The intercept f, is set to zero
in the sequel without loss of generality (see footnote 1). For identification purposes, let us assume
that E[m;(Z;)] =0 for all j =1,...,q. Replacing 4 by Y or X, observe that E[¢(Z;, W;)Y|Z;]
and E[¢(Z;;, W;i)XilZ;] correspond to hj(- Y)(Z i) and hj(-X)(Zﬁ), respectively. Using previous
arguments and notations, it follows from (1) that

Z) = my(Z) + NZpY B (=L, 9). ®)
If we add the g-equations in (8) and subtract the result from (1), we obtain
Y, = hZ) = (Xi = KNZ) B+ w, ©)

where we have used the definition in (6). Notice from (9) that we have reduced the PLAM to a
linear model where the dependent and independent variables are expressed in deviations form
around the best additive approximations, AY)(-) and A“(.), respectively. Let A4; denote an
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estimator of hAY(Z;) where 4 can be Y or X. Based on (6), we define A; as

A=Y 4, (10)
j=1
where /le denotes an estimate of h](.A)(Z_ i) = Ed(Zi, Wi)AilZ;;]. We compute /]jl: by
i 1 1 Zie—Zi\ p,,(Wip) . .
P K(’ ) 0 g = em j=1.....0). 1
- 1)1); b )iz / 9 (D

where K(-) is a kernel function, b is a bandwidth (or smoothing parameter), and p,,(-) and p(-) are
kernel smoothers of the corresponding densities. Based on (9) and using the kernel smoothers
defined above, an estimator of f§ for the PLAM can be defined as the vector of OLS coefficients f
of the deviation (Y; — ¥;) on (X; — X,).! Following the notations of Robinson (1988), this OLS
estimator can be formulated as

p -1
p= S)(ff(SXf)?,Yff/’ (12)
where for scalar or column vector sequences C; and D;, Scp = le;; C:D; and S¢ = Sc.c.
If we were to ignore the additive structure of m(zy,...,z,) and assumed, instead the partially

. . : ~(Y A(X
linear model (3), we would have estimated by regressing Y; — 9( )(Z,-) on X;— 0( )(Zi); as
proposed by Robinson (1988); see Remark 3 in Section 3. From a practical stand point, the
estimator f is computationally more attractive than other kernel-based f estimators of the PLAM
introduced in the literature. A case in point is the estimator proposed by Fan et al. (1998). The
reduction in computational cost is due to the way ;Ijl- is constructed. Close inspection of the
definition shows that as compared against the used kernel conditional expectation estimator, /]J,-
eliminates the explicit estimation of the density p;(Z;;) in the denominator, see, Jones et al. (1994)

for details on such type of estimation. This simplification leads to a reduction in computation of
order n.

3. Asymptotic results

We will use 0(-), i(-) and /;(-) to denote 07)(-), K*)(-) and hj.X’(-), respectively. The latter three
functions are as defined in Section 2. Using the new notations, /(Z;) = >, hj(Z;). Define v; =
Xi—0(Z),n; =0(Z;) — h(Z;) and ¢; = X; — h(Z;). Notice that &; = 5, 4+ v;. In Section 2, we define
the vector W; as W, =(Z\,...,Zj_1,Zj41,...,Z,) for (j=1,...,q). To simplify notations, we
shall suppress the subscript j from W; and simply denote it by W. Hence, for any j € [1,...,q],
Z = (Z;, W). We shall denote the density of W by p,.(-), the density of Z; by p_(-), and the density

of Z by p(-). Let %, denote the class of functions such that if f € 9, («>0 and v>2), then, (i) fis v

'In empirical work, one may also be interested in estimating the intercept By It is easy to see that when f, #0, Eq. (9)
would become ¥, —h'"(Z)) = (1 — )y + (X; — K (Z)Y B+ ui. Hence, we would instead regress (Y;— ¥;) on
(1,(X; — X;)) so as to incorporate the estimation of the intercept.
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times differentiable, and fand its derivatives (up to order v) are all bounded by some function that
has ath order moments; (i) For all 5,7 € R, |[f(s) — f(1)| < Hz(?)|s — t|, where Hy(?) is a continuous
function with a finite ath moment. Also let 2¢", denote the class of v-order even kernel functions K:
R — R satisfying (i) [#¢(s)s*ds=0, k=1,...,v—1, and (i) # is compactly supported,
bounded, and Lipschitz continuous. Below, we impose some regularity conditions that enable us
to characterize the asymptotic properties of Zf

Al. ) (Y, Xi,Zy), i=1,...,n are 1.id. as (Y, X,Z). The joint densities p (-) and p(-) are
bounded away from zero and infinity on their compact support. Further, the density
function p.(-) € {év E

(ii) E[u?|x,z] = 62(x, ) is continuous in z, and both u and v have finite fourth moments. The
function 0(z) is bounded on the support z; for all j € [1,...,g], m;(-) € g ,and /() € g
where v>=2 is an integer.

A2. K € A, and the bandwidth sequence b is of the form b = an™", where a is some constant and

K is a positive real number satisfying <x <1.

Assumption A2 gives the conditions on the order of the kernel function and the rate of
convergence of the bandwidth. We like to note that only when g<4 where ¢ is the number of
additive components that the use of a second-order kernel %", is sufficient to attain convergence
of ﬁ at the parametric rate. When ¢ >4, a higher order kernel is needed for n'/?-consistency. For
example, one may choose K € 44 and b = o(n~'/%).

Theorem. Let @ = [E[¢;e]]. Under Assumptions Al and A2, and provided ® is positive definite,
n'(f — ) — NO,2).
where ¥ = &7 'Qd~" and Q = [E[ Z(X,,Zl, Wi)eiel). The variance—covariance matrix X can be

consistently estimated by S=9¢"'00 where = I (X - X)X - X, Q= n1>" 0 (X —
X)X =X, andt; =Y, — Y — (X; — X)ﬁ

The proof of the theorem is given in Section 4. A few remarks are in order.

Remark 1 (Weaker identification condition). 1t is easy to see that @ = E[e;e]] = E[viv}] + E[nn]]
since & = 1n; + v;. Thus, when in fact m(-) is additive, the condition needed to identify f is weaker
in the sense that we only require E[v;v]] or E[n;1;] to be positive definite. When the additivity of m(-)
is ignored, we strictly require E[v;v]] to be positive definite (see Robinson, 1988). An interesting
consequence of this weaker identification is that X can be allowed to be a deterministic function of
Z as long as 0(-) is not additive. Note that when 6(-) is not additive, n#0. Thus f is identified even
when v = 0 (or 6(Z) = X). Therefore, the PLAM in conjunction with the proposed estimator f
provides additional modeling flexibility by allowing interaction terms among the elements of Z to
enter as the linear part of the model, i.e., X = D(Z) where D(-) is some known deterministic non-
additive function of Z.

Remark 2 (Semiparametric efficiency). Suppose the errors of the PLAM are homoscedastic, i.e.,
02(x,z) = 2. Under this condition and applying the more general result of Chamberlain (1992),
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the semiparametric efficiency bound for the inverse of the asymptotic variance of an estimator of
B is given by Jo = (1/62)inf g ,E{[0(Z;) — 0*(Z)O(Z) — 0(Z,)]'}. But, from Section 2 we know
that 4 is the best addltlve approximation to 0. Hence, J becomes, Jo = (1/62)E{[X; — W(Z)|[X; —
WZ)'} = (1/c>)d = >~!. Therefore, our estlmator ﬁ is semiparametric efficient in the sense that
the inverse of the asymptotic variance X~' reaches the semiparametric efficiency bound when the
errors are homoscedastic. In contrast, neither the kernel-based f§ estimator by Fan et al. (1998)
nor that of Fan and Li (2003) are semiparametric efficient.

Remark 3 (Ignoring additivity). Suppose we ignore the additivity of m(-) (our model set-up) and

AR
simply use an approach, say the estimator (denote this by f ) by Robinson (1988). Under
homoscedasticity of the errors u, we know from Robinson (1988) that the asymptotic variance of

W2 — B is GA(E{[X; — 0(Z)IX: — 0(Z)]})~". Therefore, when 0(-) is non-additive,  (see the

. . . . . ~R
theorem) has a smaller asymptotic variance and hence is asymptotically more efficient than f .

4. Proofs

The theorem is proved in two parts. First, we show that n!/ 2([3 — f) = N(O0,2). To simplify the
notations in Section 3, we introduce the following short-hand forms: 0, = 0(Z;), m; = m(Z)),
hi = WZ;), mj; _m,(Z,,) hiy =hi(Z;), v; = X;i—0;, n,=0;—h;, and & = X; —h,. Using the
definition of 4; in (I1) and noting that X;=rn;+v; + A, it is_easy to see that Y, — Y, =
(Xi— X))+ (mj — i) + (u; — 1) and X; — X_nl-l—vl-l—(h—h)—v,—nl Then, 1fS1
exists,

n' 2B =B =7l en" Sy 3 irui (13)

Therefore, to prove the first result, it is sufficient to verify the following results: (I) Sy_3 = =d=
@+ op(1), D) 'Sy _¢ i = 0p(D), A1) 'S, ¢ = op(1), and (V) n'2S,_ 3 — N(0, Q).
Combining (13) with results ()~(IV) gives n'/2(f — f) = @' N(0, Q) + o,(1) — N(O oo
as needed. Below are the proofs of results (I)~(IV). In proving these results, Assumption A2 will
be repeatedly used without being explicitly mentioned.

@ SX-)? =P+ o0p(1): Sy_5 =S, 1ortraiy—ii—s = Sn+v + Spiy—s—i T 28,10 0—iy—s—j- Note that
Spto =03 86, =®d+0,(1) by the law of large numbers. The second term:
Siny—ii S8 + So + S} = op(l) by Lemmas 2, 4(a) and (c). The final term:

iFo,(h— /1) v <{Sr/+vS(h h)—5 }1 /2 {Op(l)op(l)}l/2 =op(1). O

(II) n SX X m— m_Op(l) SX X m— m_S11+b+(h h) — vm m:S’?‘Hm m+Sh hym— m_SUm i
Sﬂm —. FlI’St note that Sn+vm m\{ 11+L m— m}l Sh hm n1<{Sh o m— m}l /2
Sem—in <{SsSm- m}l 2 and Siim—in <{S5Sm— a2, Using Lemmas 2, 4(a) and (c), it follows that
SX X m—i Op(l’l 1/) [

(D) 228y = 0p(1): Sy_g4=S,sviiroiriisa = Snit + S + S_jpz — Ss — Sy By Lem-
mas S5(c) and (b), respectively, S,;=op,(n"/?) and S,;=oy(n"" 2) Noting that
S)_ia<{S,_;Sa}"/* and using Lemmas 2, and 4(b), S,_; ; = 0p(n” 1/2) Similarly S = op(n~/2)
by Lemmas 4(a) and (b). Finally, Sia = op(nfl/ 2) by Lemmas 4(b) and (c). Combining all these
results, Sy 3, = op(n~1?). O
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Iv) n1/2SX—)?,u — N(0,Q): SX—)?,u = Sn+b+(h —hy—i—bu — S’H‘l” + Sh o SU“ - S'?” By Lem-
mas 3, 5(a), and (d), S,_j, = 0p(n™"), Sz = 0p(n~"/?) and Sj, = op(n_l/z) Thus, n'2Sy_ 3, =
n2Syvu + 0p(1) = n7 V23" g + 0,(1) — N(0, Q) by Levi-Lindberg central limit theorem. [

Now We move to the second part of the theorem, i.e. S=3+ op(1), or d'0d " =
o 'Qp! + 0p(1). We have already established = @ + op(1); see result (I) above. Thus, it
remains to prove Q=0+ op(1). It will be shown that: (V) Xi—Xi=e+ op(l) and (VI) ul =
i+ op(1). These two results imply that Q=n"'Y, @2 (X, — X)X, — X)) =n~ 'S ileie, +
op(1) = Q + op(1) by the law of large numbers. This completes the proof. Below are the proofs
of results (V) and (VI).

V) X;— X =g +0p(1): recall that X; — X = n; +vi + (h; — hi) =t — i1;. From Lemmas 2,
4(a) and (c), (h; — hi) = op(1), ¥ = 0p(1), and #j; = op(1). These imply that X; — Xi=e+ op(1)
where ¢ =n; +v;. U .

(VI) it = u; + op(1): replacing (¥; — Yy)ind=Y:— ¥, —(X;— X)B by (X; — X)) B+ (m; —
) + (u— ;) gives w; —i; = (X; — X, (/3 p) + (m; — m;) + @t;. From the first part of the
theorem, we have ﬁ B = Op(n~ 1/2). By Lemmas 2 and 4(b), (m; — ii1;) = op(1), and it; = op(1).
These combined with result (V) give i; = u; + op(1). O

4.1. Intermediate results

Here we state and prove five lemmas that are useful in proving the main theorem of the paper.
In all the lemmas, we assume that the conditions of the theorem are satisfied. To simplify our
presentation, we denote C,, ~ B, when C,, = B, + 0,(B,), 1.e. C, equals B, plus a term that goes
to zero in probability faster than B,. In what follows, g can be & or m. The function g will be a
p x 1 vector when it assumes /4. Note that v and # are also p x 1 vectors. In proving the lemmas,
we only consider the scalar case, p = 1. Using the Cauchy inequality, the proofs for the vector
cases follow from the corresponding scalar cases. We repedtedly use the following notations:
Zi =27y, fi=1(Z)) = g1, andf = 911 Note that f € % We let K; = K{(Z} — Z7)/b}, pyi =
p(Wi),and p.,,; = p(Z7, W;). We will use E;(-) to denote [E( |Z7, W5). Throughout this subsection,
M denotes a generic constant.

Lemma 1. 4, ~ (1/nb)S""_, K(Zje — Zi) /D) (W )/ p(Zjts W) As.

Proof. Due to the uniform convergence of p,(-) and p(-,-) to p,(-) and p(-,-), respectively, the
result follows. [

Lemma 2. S, ; = O,(n~'b+b”).
Proof. Note that S,_; = Sql g, since gj =0fork#j. Let C; = Ci; + Cyi +--- + Cy. It s

easy to see that SC<Z/ 1 8¢ +2Zk¢] (Sc,Sck)l/ Using this inequality and noting the fact
that each summand in S,_; plays the same role, it suffices to evaluate the order of one of the
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summands, say Sg; — é},

D,i Pw
[E[Sg]_g}] = [E[(fl fl) 2 22 Z [E[(/ fl)Kll (f f])Klj J]
n%b i#l j#£1 Zw,i W,
1 : : pW, 1 g pw,
[E[(fz ~ KRB+ [[El{(fz —fVKD 2}
zw,2 w,2
Dy
X[El{(f3 — K32 H
w3

=Dy + D,.

With Z5 = Z] + bs and noting that p,,(-) and p(-,-) are uniformly bounded and f € ?3,

= * * 2 pw( ) * x
D)= — ////(f(z + bs) — f(Z1) K () o 7+ b, Bk p(Zt, W) dZidW dsd W,

<— / / / p(Z1, WOHHZ)S K (s)dZ},d W ds = O(n™'b).
Similarly,
M 242y 2v
D)< F[E[[El{(fz —DKRIEA( 5 — DK< b E{(Dy)’} = O(b™)
by Lemma 1 of Li (1996). Combining the above results, E[S, ] = on'b+5*). O
Lemma 3. S, ;, = Op(n'b"* +n~'/2p").

Proof. Note that Sy 5, =S, 5, +---+ S, 5, Asin Lemma 2, it suffices to evaluate the order
of S, ;. This can be shown by followmg similar steps as in Lemma 2 with the followmg in

z]
mmd [Efu,(f f Yui(f f )] = 0 for i#; due to the independence assumption, E(u;|X;, ZF, W;) =
0 and assumption that u and v have finite fourth moments. [

Lemma 4. (a) S; = Op((nb) "), (b) Si = Op((nb)™") and (c) Si = Op((nb)~" + b™).

Proof. (a) Note that S; = S, ;. Reasoning as in Lemma 2, it suffices to evaluate the order of
S;. Using E(v;|Z7, W;) = 0 and noting that the densities are uniformly bounded,

[E[S ]—[E[(Nl) —[E{ bz Kllf\‘“ bZKljpwJ }

i#l Pz J#1 Lw,]

M
< E(E2{v3K%,}} = O((nb) ™).

(b) The proof of (b) is the same as (a).
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(c) For the same reason as in (a), we only evaluate the order for Sj:.

ELS;,] = E[G7')*] ~[E{ > Ku Loty bZ ga }

i#1 Jj#1 ”WJ

1

1 :
= —[E[ 2K%252u} + - [Klz P2

w,2

- ; (025 W)~ 2 + 0]

zw
P w,3

w3

x % Ey [KIB {0(Z3, W3) — m(Z7) + O(b”)}]

1 p 1 Dy ) 2
P 2 w “E 8 * . " N
an |: Klngwj| {b ] |:K12 w,2 {G(ZZ’ Wz) hl(ZI) * O(b )}:| }

= D3+ Dy,

where we have used n; = 0(Z;, W;) — W(Z;, W;) and (1/nb)} ", K1i(p,, i/ P )MZ}, W) = hi(Z}) +
O(b"). Using the same arguments as in Lemmas 2 and 4 and noting that 0(-) is bounded in its
support, it is easy to see that D3 = O((nb)~!). Moving on to D4 and using Taylor series expansion,
it can be shown that Ei[K1op,,/p.,,20(Z3, Wz)] = bhl(Z*) + 0p(0"") and E([Kop,, 2/Pov2l = b.
Thus, Dy = O(b*"). Therefore, [E[S,“] o((nb) ' +5*). O

Lemma 5. (a) S, = Op(n~'6""/%), (b) Sy, = Op(n~'57"?), (¢) Suy = Op(n'b7"%), and (d) S;,, =
Op(n~'b™"2 + n=1/2p"),

Proof. (a) Because S;, = Sy, + -+ + Sy, it suffices to evaluate only Sy .

1 . Dy Dy
Lo~ L zzmlulvxl, s ]

i#l j#1 Pzw,i pzw,/

Dy 2 pw,3
v3K13
pzw,2 pzw,3

E(S5,,)

1 1
= W[E[ulvgl(z p“] +$[E[u%vgl(12

w,2

M
—p ElvaKi,] = O(h)™)

by bounded densities and E[v;|Z}, W;] = 0. Hence, Spiy= Op(nflb_l/z).

The proofs for (b) and (c¢) are the same as (a).

(d) Because Sy, = S;i, + -+ + Sjou, it suffices to evaluate only S, Use the same arguments
as in Lemmas 5(a) and 4(c) to obtain the result. [
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