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Tests for Serial Independence and

Linearity Based on Correlation Integrals

Abstract

We propose information theoretic tests for serial independence and linearity
in time series against nonlinear dependence on lagged variables, based on the
conditional mutual information. The conditional mutual information, which is a
general measure for dependence, is estimated using the correlation integral from
chaos theory. The significance of the test statistics is determined by means of
bootstrap methods. The size and power properties of the tests are examined by
simulation and illustrated with applications to real US GNP data.



1. Introduction

It is well known that processes with zero autocorrelation can exhibit higher order
dependence or nonlinear dependence. This has motivated the development of
tests for serial independence with power against general types of dependence.
The recent literature shows an increasing interest in nonparametric approaches
since they avoid making restrictive assumptions on the marginal distribution
of the process. Usually a nonparametric measure of divergence between two
distributions is taken to be the basis of the test. For example, Robinson (1991)
considers the Kullback-Leibler information, while Skaug and Tjøstheim (1993a)
study the Blum, Kiefer & Rosenblatt (1961) statistic. Some divergence measures
based on the probability density functions are compared in Skaug and Tjøstheim
(1993b). Other recently proposed nonparametric tests for serial independence
in time series can be found, for example, in Chan and Tran (1992), Delgado
(1996) and Aparicio and Escribano (1998).

Although evidence against the null hypothesis of independence for a partic-
ular time series suggests the presence of structure in the time series, it usually
provides little insight into the nature of this structure. For example, the struc-
ture could be either linear or nonlinear. The properties of linear models are
well-known, and linear modelling is relatively straightforward compared to non-
linear modelling. Therefore, before moving to nonlinear models for an observed
time series, one should at least have some evidence for the presence of nonlin-
ear dependence. Therefore, when dependence is found, testing the hypothesis
of linearity is a natural next step in practice. One way of testing for linearity
is by applying a test for independence to the residuals of an estimated linear
model. A rejection of the null hypothesis provides evidence suggesting that
some structure is left in the residuals upon removing linear dependence, and
hence that a linear model is not appropriate. Brock et al. (1996) have shown
that the BDS test for independence provides a consistent specification test when
applied to residuals, provided that the model parameters are estimated root-N
consistently. An alternative approach to testing for linearity is that of compar-
ing linear and nonparametric statistics, such as estimators of the conditional
mean and variance, as proposed by Hjellvik and Tjøstheim (1995) and Hjellvik
et al. (1998). This avoids pre-whitening of the time series, which typically leads
to a reduction in power, and also preserves the order of dependence in the time
series.

The statistics used in this paper are closely related to the δ statistic intro-
duced by Wu et al. (1993) for measuring conditional dependence. The δ statis-
tic is defined in terms of ratios of correlation integrals. Correlation integrals
originate from the study of chaotic systems, where they are important means
of characterizing the dynamics of deterministic processes. Their estimation is
relatively straightforward. The connection between generalized correlation inte-
grals and information theoretic quantities, established by Prichard and Theiler
(1995), shows that our statistics correspond to the second order conditional mu-
tual information. The information theoretic quantities used by Granger and Lin
(1994) are also related to ours. However, their test statistic is a generalisation
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of the autocorrelation function, while ours generalises the partial autocorrela-
tion function. This renders our statistics more suitable for investigating the
lag dependence, which may serve as a first step for model selection. Since the
number of parameters in a parametric nonlinear time series model (such as a
TAR model) typically increases fast with the number of lags selected, lag se-
lection criteria are important for constructing parsimonious time series models.
For some recent approaches to lag selection see Auestad and Tjøstheim (1990),
Cheng and Tong (1991), Tschernig and Yang (2000).

The proposed tests are characterized by the following three properties. Firstly,
the test statistics are based on information theoretic quantities. Since these are
nonlinear functionals of the density function they can capture dependence in
higher moments of the distribution. Secondly, the conditional mutual informa-
tion is used, rather than mutual information. This provides insights into the
lag dependence in the time series. Thirdly, in the linearity test we compare
nonparametric and linear parametric information-theoretic quantities for the
original time series. The advantage over testing for dependence in residuals is
that the lag dependence in the time series is preserved.

In section 2. we briefly review some information theoretic quantities while
section 3. describes the estimation methods based on correlation integrals. Sec-
tions 4. and 5. discuss the test of independence and linearity, respectively. In
section 6. the size and power properties of the tests are investigated numerically
for a number of linear and nonlinear models. Section 7. illustrates our approach
with applications to a macroeconomic time series.

2. Information theory

Information theory was introduced by Shannon (1948) and Wiener (1948) and
its statistical application pioneered by Kullback (1959). Since our approach is
closely connected with information theory we will give a brief overview here.

Let X be a continuous, possibly vector-valued, random variable with proba-
bility density function fX(x). The Shannon entropy is defined as

H(X) = −
∫

ln fX(x)fX(x) dx, (2.1)

which is just the expected value of − ln fX(X), −E(ln fX(X)). Similarly, for a
pair of random variables X, Y with joint probability density function fX,Y (x, y),
the joint entropy reads

H(X,Y ) = −
∫ ∫

ln fX,Y (x, y)fX,Y (x, y) dx dy. (2.2)

The conditional entropy of X given Y is the mean entropy of X, conditional on
Y :

H(X|Y ) = −
∫

ln fX|Y (x | y)fX,Y (x, y) dx dy, (2.3)
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where fX|Y (x | y) denotes the conditional probability density function of X,
given Y = y. It can be easily verified that H(X|Y ) = H(X,Y ) − H(Y ). Note
that H(X|Y ) is not invariant under changing its arguments. However, the
mutual information, defined as

I(X,Y ) =
∫ ∫

ln
(

fX,Y (x, y)
fX(x)fY (y)

)
fX,Y (x, y) dx dy, (2.4)

is a symmetric measure of dependence between X and Y . The mutual in-
formation measures the average information contained in one of the random
variables about the other. The symmetry follows directly from the definition
and also becomes obvious after expressing it in terms of entropies: I(X,Y ) =
H(X)−H(X|Y ) = H(X)+H(Y )−H(X,Y ). The mutual information is invari-
ant not only under scale transformations of X and Y , but more generally, under
all continuous one-to-one transformations of X and Y . It is also non-negative,
I(X,Y ) ≥ 0, with equality holding if and only if fX,Y (x, y) = fX(x)fY (y). This
property makes it a useful quantity for testing independence hypotheses.

For testing conditional independence of X and Y , given a third random
variable Z, it is useful to consider the conditional mutual information, defined
by

I(X,Y |Z) =
∫ ∫ ∫

ln
(

fX|Y,Z(x|y, z)
fX|Z(x|z)

)
fX,Y,Z(x, y, z) dx dy dz. (2.5)

The conditional mutual information quantifies the average amount of additional
information in Y about X, given the information about X already contained in
Z. This can be seen by expressing it as I(X,Y |Z) = H(X|Z) − H(X|Y,Z) =
−H(X,Y,Z) + H(X,Z) + H(Y,Z) − H(Z) = I(X|Y,Z) − I(X|Z). We have
I(X,Y |Z) ≥ 0, with equality if and only if X and Y are conditionally indepen-
dent, given Z.

To describe the relation between information theoretic quantities and corre-
lation integrals it is convenient to notice that the Shannon entropy is a special
case of a generalised entropy, the Renyi entropy, defined by

Hq(X) = − 1
q − 1

ln
∫

(fX(x))q−1
fX(x) dx, (2.6)

where q denotes the order of the Renyi entropy. Indeed, by taking the limit
q → 1, one obtains using l’Hôpital’s rule,

lim
q→1

Hq(X) = −
∫

ln fX(x)fX(x) dx, (2.7)

which is just the Shannon entropy H(X) defined in Eq. (2.1).

3. Correlation integrals

Next let us describe the connection with correlation integrals, and the way cor-
relation integrals can be used as estimators for information theoretic quantities.
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The generalized order-q correlation integral of X is defined as

Cq(X; ε) =

[∫ (∫
I(‖x−x′‖≤ε)fX(x′)dx′

)q−1

fX(x)dx

] 1
q−1

, (3.1)

where I(·) denotes the indicator function taking values 0 and 1, and ‖ ·‖ denotes
the supremum norm

‖x‖ = sup
i=1,...,dimx

| xi | . (3.2)

The parameter ε plays the role of a bandwidth. Correlation integral estimates
are being used frequently in chaos theory to study fractal structures and to char-
acterize deterministic time series. Correlation integrals are also useful for testing
for serial independence, because the generalized correlation integral factorises
when the elements of X are i.i.d. (independent and identically distributed).
The factorisation for q = 2 was used in the BDS test for independence, based
on C2(X; ε).

Upon taking logarithms in Eqn. (3.1) we obtain

− ln Cq(X; ε) = − 1
q − 1

ln

[∫ (∫
I(‖x−x′‖≤ε)fX(x′)dx′

)q−1

fX(x)dx

]
, (3.3)

which differs from the generalized Renyi entropy, given in Eqn. (2.6), only in
that it has the term fX(x) within brackets replaced by an integral of fX(x′)
over an ε-ball around x. The inner integral in Eqn. (3.1) behaves as εmfX(x)
for small ε, where m is the dimension of X. Thus, up to an ε dependent scale
factor, the correlation integral will correspond to the integral in Eqn. (2.6). The
relationship between Hq(X) and Cq(X; ε) for ε small is

Hq(X) � − ln Cq(X; ε) + m ln ε. (3.4)

This shows that estimated correlation integrals provide nonparametric estimates
of Hq(X). To give an example of how this leads to estimates of information
theoretic quantities, let us consider Iq(X,Y ) the q-th order mutual information
between X and Y , given by

Iq(X,Y ) = Hq(X) + Hq(Y ) − Hq(X,Y ). (3.5)

Given estimated correlation integrals Ĉq(X; ε), Ĉq(Y ; ε) and Ĉq(X,Y ; ε), an
estimator for Iq(X,Y ) is given by

Îq(X,Y ) = ln Ĉq(X,Y ; ε) − ln Ĉq(X; ε) − ln Ĉq(Y ; ε). (3.6)

The terms proportional to m ln ε cancel because the dimension of (X,Y ) is the
sum of those of X and Y . A similar cancellation occurs in the conditional
mutual information, for which we obtain analogously:

Îq(X,Y |Z) = ln Ĉq(X,Y,Z; ε) − ln Ĉq(X,Z; ε) − ln Ĉq(Y,Z; ε) + ln Ĉq(Z; ε).
(3.7)
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Further details on the connection between correlation integrals and information
theory can be found in Prichard and Theiler (1995).

The choice q = 2 is by far the most popular in chaos analysis, since it
allows for efficient estimation algorithms. The conditional mutual information
Iq(X,Y |Z) strictly speaking is not positive definite for q �= 1. This means that it
is possible to construct examples of variables X and Y , which are conditionally
dependent given Z, and for which I2(X,Y |Z) is zero or negative. If I2(X,Y |Z)
is zero, the test based on I2 asymptotically does not have unit power against
this alternative. This situation appears to be very exceptional, and usually
I2(X,Y |Z) is either positive or negative. This suggests that a one-sided test,
rejecting for I2(X,Y |Z; ε) large, is not always optimal. In practice, however, I2

behaves much like I1 in that we usually observe larger power for one-sided tests
(rejecting for large I2) than for two-sided tests. This led us to choose q = 2,
together with a one-sided implementation of the test.

4. Testing for Serial Independence

In this section we describe our approach to testing for serial independence in
a time series setting. Let {Xt}T

t=1 be an observed time series of length T . We
test the following null hypothesis:

H0 : Xt is i.i.d.

our test statistic is based on the conditional mutual information defined above.
By doing so the test is designed to have power against alternatives with con-
ditional dependence, which has the advantage that the p-values obtained at
different orders provide information about the lag structure of the time series.

We define delay vectors as

Xm
t = (Xt, . . . , Xt−m+1)′, (4.1)

where the prime denotes the transposed. The number of elements m is referred
to as the embedding dimension. The total number of vectors, N , obtained in
this way is N = T − m + 1.

The conditional mutual information between Xt and Xt−m given the inter-
mediate observations, Xm−1

t−1 is given by

I(Xt,Xt−m | Xm−1
t−1 ) = −H(Xm+1

t−1 ) + 2H(Xm
t ) − H(Xm−1

t−1 ). (4.2)

The conditional mutual information has a particular interpretation in a time
series setting: if Xt is a Markov process of order k, the conditional probability
density depends only in the last k lagged values of the time series and further
lags contain no additional information. The conditional mutual information
between Xt and Xt−� will become zero for � > k and positive for � ≤ k. In
this sense the conditional mutual information can be interpreted as an order
identifier.
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Another useful interpretation is the following. The average amount of in-
formation about Xt in Xm

t−1 is given by I(Xt,Xm
t−1), while the average amount

of information about Xt in Xm−1
t−1 only is given by I(Xt,Xm−1

t−1 ). If these two
information measures are subtracted, one arrives at

I(Xt,Xm
t−1) − I(Xt,Xm−1

t−1 ) = I(Xt,Xt−m | Xm−1
t−1 ), (4.3)

the conditional mutual information. This demonstrates that the conditional
mutual information quantifies the average amount of extra information that
Xt−m contains about Xt, in addition to the information already in Xm−1

t−1 . If
Xt−m contains no extra information about values of Xt in addition to that in
Xm−1

t−1 , I(Xt,Xt−m | Xm−1
t−1 ) = 0. If, on the other hand, Xt−m does contain

extra information on Xt, we expect I(Xt,Xt−m | Xm−1
t−1 ) > 0. We thus propose

to perform a one-sided test based on I(Xt,Xt−m | Xm−1
t−1 ), estimated from

correlation integrals.
Upon introducing Cm(ε) and Ĉm(ε) as shorthand notation for C2(Xm

t ; ε)
and its estimator Ĉ2(Xm

t ; ε), respectively, we may write

Î(Xt,Xt−m | Xm−1
t−1 ) = −2 ln Ĉm(ε) + ln Ĉm+1(ε) + ln Ĉm−1(ε). (4.4)

The second order (q = 2) correlation integral for the m-dimensional delay
vectors Xm

t is

Cm(ε) =
∫ ∫

I(‖s−t‖≤ε)fXm
(s)fXm

(t) ds dt. (4.5)

Because this is just the expectation of the kernel function, E(I(‖X1
m−X2

m‖≤ε)),
it can be estimated straightforwardly in a U -statistics framework, by

Ĉm(ε) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

I(‖Xm
i
−Xm

j
‖≤ε). (4.6)

Note that the conditional mutual information is an unbounded measure of
conditional dependence. In our implementation we use a transformed version of
the mutual information,

δ̂m(ε) = 1 − exp(−Î(Xt,Xt−m|(Xt−1, ...,Xt−m+1)) = 1 − [Ĉm(ε)]2

Ĉm−1(ε)Ĉm+1(ε)
,

(4.7)
which takes values between 0 and 1. The use of δ̂m(ε) was first proposed by
Savit and Green (1991) to determine the dimension of a chaotic attractor. Wu
et al. (1993) derived the asymptotic distribution under the null hypothesis of
an i.i.d. process. The asymptotic distribution is

T
1
2 δ̂m(ε) d→ N(0, Vδm

) (4.8)
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where the asymptotic variance is given by

Vδm
= 4

{(
K1(ε)
C1(ε)

)m−1
[(

K1(ε)
C1(ε)

)2

− 1

]}2

, (4.9)

and Ĉ1(ε) indicates the correlation integral at embedding dimension 1 while
K1(ε) is estimated by

K̂1(ε) =
2

N(N − 1)(N − 2)

N−1∑
i=1

N∑
j=i+1

N∑
k=j+1

I(|xi−xj |≤ε)I(|xj−xk|≤ε). (4.10)

It is known that the normal approximation based on the asymptotic distri-
bution does not always perform well for small sample sizes. In the simulation
study we will show that problems also arise for δ̂m(ε). This is the main motiva-
tion for using a bootstrap approach for determining the null distribution of the
test statistic.

We will implement the test for independence as a Monte Carlo test. The
Monte Carlo approach was first suggested by Barnard (1963) in the context of
testing a simple null hypothesis. The idea is to construct the null distribution of
the test statistic by calculating the test statistic for a large number of indepen-
dent realisations generated by the null model. One can derive the significance
of an empirically observed value of the test statistic using the fact that, under
the null hypothesis, the test statistic for the original data and the artificial data
are independent draws from the null distribution. In cases where one wishes
to test a composite null hypothesis this procedure cannot be applied directly,
since the true null process still depends on unknown model parameters. It was
shown by Besag and Diggle (1977) and Engen and Lilleg̊ard (1997) that one
can still obtain an exact level Monte Carlo test for composite hypotheses by
conditioning on a minimal set of sufficient statistics under the null hypothesis.
The approach is very flexible in that it allows for testing null hypotheses which
are completely unspecified apart from some properties, as the symmetry tests
proposed by Diks and Tong (1999) show. Under the IID null the order statistics
provide a minimal and sufficient statistic. Under the null, and conditionally on
the order statistic, each permutation of the observed data is equally probable,
so that conditioning on the order statistic leads to a permutation test. Because
a permutation test can be implemented easily, it offers a convenient way for
obtaining an exact test.

The test procedure is thus composed of the following steps:

1. Calculate δ̂m(ε) for the time series {Xt}T
t=1.

2. Randomly permute the time series and obtain {X̃t}T
t=1.

3. Calculate the test statistic on {X̃t}T
t=1, denoted by δ̃m(ε).

4. Repeat steps 2-3 B times. In the simulations we set B to 199.
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5. Calculate the one-sided bootstrap p-value as

p̂ =
1 + #

[
δ̃m(ε) ≥ δ̂m(ε)

]
1 + B

6. Reject the null hypothesis of independence if p̂ ≤ α, where α denotes the
chosen significance level.

In the bootstrap literature it is often emphasized that one should consider
test statistics which are, at least asymptotically, pivotal under the null hypoth-
esis, that is, their distribution should not depend on any unknown parameters
under the null, see e.g. Beran (1988). The Monte Carlo approach, by condition-
ing on a minimal sufficient statistic, automatically satisfies this requirement,
even for finite sample sizes. The reason is that after conditioning on a minimal
and sufficient statistic under the null, the null distribution of any statistic, by
construction, does not depend on any unknown parameters.

5. Testing for Linearity

We test for linearity by comparing a nonparametric estimate of the conditional
mutual information with a parametric counterpart. This amounts to compare
the extra amount of information contained in Xt−m about Xt with the expected
amount of extra information under the null of linearity.

For linear Gaussian processes, we have Xm
t ∼ N (µm,Σm) where Σm denotes

the variance-covariance matrix of the m-dimensional vector of lagged values of
the process {Xt}T

t=1. The Gaussian Renyi entropy for Xm
t then becomes

Hq(Xm
t ) =

m

2
ln(2π) +

1
2

ln |Σm| + m

2
log(q)
(q + 1)

, (5.1)

which depends from the order q. The mutual information and conditional mu-
tual information for linear Gaussian processes become

Iq(Xt,X
m
t−1) =

1
2

ln
( |Σ1||Σm|

|Σm+1|
)

, (5.2)

and

Iq(Xt,Xt−m | Xm−1
t−1 ) =

1
2

ln
( |Σm|2
|Σm+1||Σm−1|

)
(5.3)

respectively, which are both independent of the Renyi order q. It follows that
δm for a linear Gaussian random process behaves as δlin

m given by

δlin
m = 1 − exp(−I(Xt,Xt−m | Xm−1

t−1 )) = 1 −
√

|Σm−1||Σm+1|
|Σm|2 . (5.4)
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Because Σm is a symmetric positive definite matrix we can factorize it as Σm =
L′

mLm where Lm is a lower triangular matrix. It is then immediate that |Σm| =
|Lm|2 =

∏m
j=1 l2j where lj is the j-th diagonal element of L. We can now express

δlin
m as

δlin
m = 1 − lm+1

lm
. (5.5)

The test statistic is an estimate of µm(ε) = δm(ε) − δlin
m (ε), which quantifies

the difference between the general and the linearized δm(ε). Upon subtracting
the estimators for δm(ε) and δlin

m (ε), one obtains

µ̂m(ε) = δ̂m(ε) − δ̂lin
m (ε) =

l̂m+1

l̂m
−

[
Ĉm(ε)

]2

Ĉm−1(ε)Ĉm+1(ε)
, (5.6)

where for l̂m a consistent estimator is used, based on triangularization of the
sample variance-covariance matrix.

In the case of testing for linearity it is less straightforward to set up a Monte
Carlo test than for the independence test, and instead we set up a parametric
bootstrap procedure to approximate the null distribution of the test statistic.

The test is composed of the following steps:

1. Calculate µ̂m(ε) for the time series {Xt}T
t=1.

2. Estimate an AR(d) model for d = 1, ..., dmax and choose the optimal order
d̂ according to a selection criterium. In the simulation and the empirical
applications we used AIC selection criterium.

3. Generate data using the estimated parameters and Gaussian innovations;
the bootstrap time series is given by

x̃t =
d̂∑

i=1

β̂x̃t−1 + εt (5.7)

with β̂ the estimated parameters and εt drawn from the standard normal
distribution.

4. Calculate µ̃m(ε) for the bootstrap time series.

5. Repeat steps 3–4 B times. We use B equal to 199.

6. Calculate the one-sided bootstrap p-value as

p̂ =
1 + # [µ̃m(ε) ≥ µ̂m(ε)]

1 + B

7. Reject the null hypothesis of linearity if p̂ ≤ α, where α denotes the
significance level.
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6. Simulations

This section describes the results obtained for the tests in simulations. Because
the time series are scaled to unit sample variance prior to analysis, the values
quoted for the bandwidth parameter ε can be thought of as being expressed in
terms of the number of standard deviations of the time series.

6..1 Test for Serial Independence

Before examining the power of our test for various models, we first examine
the size of the asymptotic test for independence for the δ statistic. Recall that
checking the size of the permutation test for independence is not necessary, since
the permutation test by construction has exact level.
Table 1 shows the size of the asymptotic test for sample sizes of 100, 200 and
500 and for ε equal to 0.5, 1.0, 1.5 and 2 based on 1000 simulations. In all cases
the asymptotic test has a tendency of over-rejecting. As expected, increasing
the time series length T improves the size of the asymptotic test. Also it can
be observed that for small ε the asymptotic approximation is poor. In that
case, the correlation integrals are determined by a small number of distances
so that the assumption of normality is no longer realistic. For similar reasons,
increasing m also leads to a poor approximation of the asymptotic theory. These
results clearly demonstrate the overall poor performance of the asymptotic test
for small sample sizes.

T = 100 T = 200 T = 500
ε m = 1 2 3 4 1 2 3 4 1 2 3 4

0.5 0.21 0.29 0.40 0.48 0.14 0.23 0.32 0.42 0.09 0.14 0.25 0.34
1.0 0.13 0.15 0.19 0.23 0.08 0.09 0.13 0.17 0.07 0.06 0.07 0.10
1.5 0.11 0.12 0.13 0.16 0.08 0.09 0.09 0.10 0.06 0.06 0.06 0.08
2.0 0.15 0.16 0.17 0.16 0.08 0.10 0.10 0.10 0.06 0.07 0.07 0.07

Table 1: Size of the asymptotic test for δ̂m(ε) at the 5% nominal level for i.i.d.
Gaussian noise, for various values of the bandwidth parameter ε, time series length T ,
and embedding dimension (order) m.

We next investigate the finite sample performance of our test for indepen-
dence for the models given in Table 2. Throughout we use 1000 simulations for
each case, keeping the number of bootstrap replications fixed at B = 199. The
AR(1) process and the Asymmetric Tent Map (ATM) have the same autocor-
relation structure but the second process is a chaotic map. For the Nonlinear
AR (NLAR) model we will consider dependence in different lags and investigate
the behavior of the statistic in identifying the order. The remaining processes
are nonlinear stochastic models with zero autocorrelation at all lags. For these
models the application of autocorrelation based tests would fail to detect any
dependence. Because of the curse of dimensionality, we analyzed the conditional
dependence in the first four lags for sample sizes T = 100 and T = 200. We
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considered three values of the bandwidth equal to 0.5, 1.0 and 1.5.

Name Model
AR(1) yt = 0.6yt−1 + ut

ATM yt = 1.25yt−1I(0 ≤ yt−1 ≤ 0.8) + 5(1 − yt−1)I(0.8 < yt−1 ≤ 1)
BILINEAR yt = 0.6ut−1yt−2 + ut

NLAR(k) yt = |yt−k|0.8 + ut

TAR yt = −0.5yt−1I(yt−1 ≤ 1) + 0.6yt−1I(yt−1 > 1) + ut

ARCH(1) yt =
√

htut, ht = 1 + 0.6y2
t−1

GARCH(1,1) yt =
√

htut, ht = 1 + 0.3y2
t−1 + 0.6ht−1

Table 2: Time series models used to investigate the power of the tests. The innova-
tions ut are drawn independently from the standard normal distribution.

The results are shown in Table 3. For the AR(1) model the permutation
test has power close to unity for the first lag for all sample sizes. For higher
lags the rejection rate is close to the nominal level, confirming the ability of the
test to detect conditional dependence, which only occurs through the first lag.
Notice that the power for the lags larger than 1 are even smaller than the size.
This possibly results from the fact that there is conditional independence in this
process for higher lags, but no unconditional independence (our null hypothesis,
under which the bootstrap is performed).

For the chaotic ATM, the test has unit power at lag one for all our choices
for the time series length and the bandwidth. The obtained rejection rates for
this model were zero for all higher lags, which have no conditional dependence.

The BILINEAR model exhibits conditional dependence through the first two
lags. For this model larger sample sizes clearly improve the power of the test.
As expected the test has power against this alternative only for the first and
second lag.

The result for the NLAR model confirm the ability of the test to have very
high power to detect dependences. When the true order is 1 the test has power
higher than 0.90 on the first lag for the range of ε considered. Instead when
the true order is 3 the bandwidth becomes relevant for the power of the test:
for ε = 0.5 it is 0.38 and increases to 0.89 for ε = 1. For sample size of 200
the power increases significantly. The lower power of NLAR(3) in comparison
with NLAR(1) for T = 100 can be explained as the result of the curse of
dimensionality: estimating multivariate densities for small bandwidth affects
the statistical precision of the test statistics.

The test has also power against the (first order) TAR model: for ε = 1.0
the rejection rate is 0.62 for sample size 100 and 0.89 for 200. In this case
ε = 1.5 shows less power than the smaller bandwidths for the first lag (m = 1).
Here it can also be observed that there is some power in the second lag. We
conjecture that this ”leakage” of power is the result of taking a bandwidth too
large compared to the length scale on which the conditional distribution of Xt

given past observations changes.
For the ARCH(1) model the test has remarkably high power already at
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sample size T = 100: for ε = 1.0 it goes from 0.86 to 0.99 for time series lengths
of T = 200. Some marginal power is also detected in the second lag and no
evidence of deviations from the null occur in the third and fourth lag.

The test also has power against the GARCH alternative. For the GARCH(1,1)
model the test has power for all four lags analyzed. In this case the interpreta-
tion in terms of order is not possible, as the model for Xt is of infinite Markov
order.

Although the optimal bandwidth is expected to depend on the alternative at
hand, a bandwidth of 1.0 appears to be reasonable for the processes examined
here.

There are of course many tests for independence with which we can compare
ours. However, it appears unreasonable to compare an omnibus test with a test
which has power against specific alternatives. It can be expected that tests
which are designed to pick up specific types of dependence, such as changes in
conditional mean or variance, have larger power for specific alternatives than
omnibus tests such as the BDS test and ours. Therefore we decided to compare
our test only with the BDS test. The latter can also easily be implemented
as a permutation test, so that the size is exact and power comparisons are
meaningful. Even taking this into account it can hardly be expected that our
test or the BDS test is uniformly more powerful than the other, which makes
direct power comparisons for specific models not very interesting. However, we
can compare our results qualitatively to the BDS test, focusing on the behavior
of the power function with changing lag m. Since the BDS test is sensitive
to dependence, and not only conditional dependence, we expect it to have a
tendency of rejecting beyond lags for which the first evidence for dependence is
found.

Table 4 shows the results for some of the models obtained with the permu-
tation version of the BDS test with ε = 1.0 and T = 100. In a comparison with
Table 3, it can be observed that the BDS test has a tendency of rejecting for
embedding dimension m > k when there is conditional dependence only up to
m = k. These results illustrate our earlier point that the δ test is more suitable
for obtaining insights into the lag dependence structure than the BDS test.

6..2 Test for Linearity

We first show the size properties of the test in Table 5. For ε smaller than
1.5, the test is correctly sized at all the four lags taken into account. For
higher bandwidth values the first lag has the tendency to underreject the null
hypothesis while larger lags seem to be relatively unaffected by the choice of ε.
These size considerations seem to suggest to take the bandwidth in the interval
0.5–1.0. Table 5 shows results for the AR(1) parameter equal to 0.6. Similar
results were found upon changing the value of the AR(1) coefficient.

Table 6 shows the power of the test for linearity for time series lengths
T = 100 and T = 200 and for different bandwidth values. We also show the
power of the V 23 test for linearity proposed by Teräsvirta et al. (1993). This test
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has power against a wide range of alternative specifications of the conditional
mean of the process. The order used in the V 23 test is the true order of the
simulated model.

The test has unit power against the alternative of ATM. Even though it
has the same linear structure of an AR model, the underlying chaotic dynam-
ics is well addressed by the test. Similar results are obtained by the V 23 test.
For ε = 1.0 and T = 200 the test has power (at 5% significance level) 0.63
and 0.85 in the first and second lag respectively, against the BILINEAR alter-
native. Comparing the power with the parametric test, it turns out that for
smaller sample size the curse of dimensionality affects the performance of the
test whereas for bigger sample size the tests have similar power. For the NLAR
process the power is higher for ε = 1 and increases with the sample size. The
order is correctly detected for the 2 models considered. For ε = 1 and N = 100
the power for the first order model is 0.29 and for the third order is 0.18. Also
for the linearity test occurs the decay in power for the model with dependence
in the third lag. In comparison with the independence test the power has signif-
icantly decreased. This is because the test for linearity considers only nonlinear
dependence whereas the independence test was rejecting also for the presence
of linear structure. The comparison with the V 23 test shows that it generally
performs slightly worse than ours, particularly for the NLAR(1). The power
is 0.57 on the first lag for TAR and increases to 0.89 for the bigger sample
size. Also for this model our test has higher power than the V23 test in the
smaller sample and similar for T = 200. Very high power is also present for the
ARCH(1) model. The test also has power on various lags for the GARCH(1,1)
model. For the ARCH and GARCH models no results are quoted for the V23
test, since this test is not consistent against dependence in higher moments.

Power considerations suggest that ε = 0.5 performs poorly in comparison
with higher bandwidths. A reasonable trade-off between size and power seems
to suggest a choice of ε ≈ 1.0. In addition, the comparison with the V23 test
suggests that our test in most cases performs at least as well. The additional
advantage of the nonparametric linearity test is that it can also capture depen-
dence occurring in higher moments.

7. Empirical Applications

There have been many investigations concerning the presence of nonlinear dy-
namics in real US GNP data. In a TAR framework, Tiao and Tsay (1994)
proposed a 4 regimes model involving the first 2 lags and Potter (1995) a 2
regimes model using lags 1,2 and 5. We apply the tests proposed here to the
time series of log-differences of quarterly seasonally adjusted real GNP from the
first quarter of 1947 to the last quarter of 2000. The use of seasonally adjusted
data is common practice, and might introduce nonlinearities in the data. Inves-
tigating the effect of seasonal adjustment on the tests proposed here are beyond
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the purpose of this article. In total we have 216 observations and we calculate
the δ statistic up to lag 5 to avoid the curse of dimensionality.

The results are summarized in Table 7. For ε = 0.5 the null of indepen-
dence is rejected for the first 2 lags. The test for linearity instead rejects only
for the second lag and this can be interpreted as an indication that the first
order dependence was mainly of linear nature. Higher bandwidths confirm the
rejection of the null hypothesis for the first 2 lags but also the third and fourth
lags show rejections for both tests. These conclusions are partly in accordance
with the results of Tiao and Tsay and Potter. However, there is also evidence
that taking only the first 2 lags may lead to some structure left in the time
series. The reason can be an unexplained dynamics in the conditional mean or
in higher moments. As shown in Table 3 and 6 rejection of the null can arise
also because of heteroskedastic structure such as for GARCH models where the
power is spread in the first 4 lags.

8. Conclusion

In this paper we propose information theoretic bootstrap tests for independence
and linearity. The results of the simulation study show that the tests have good
power properties at moderate sample sizes, when compared to the BDS test
and the V23 test. In addition they provide insights into the lag dependence
in the data generating process. The power of both nonparametric tests typi-
cally increases when larger bandwidth values ε are taken. However, care should
be taken to avoid “leakage” of power to other lags as a result of taking the
bandwidth ε too large. The choice ε = 1 appears to be a reasonable trade-off
between these effects for the models examined. The size of the independence
test by construction is equal to the nominal size. For the model examined, the
size of the linearity test turned out to be also close to the nominal level. More-
over, for models without linear structure, the power of the linearity test was
found to be close to that of the independence test. This suggests that little is
lost in terms of size and power when testing the more general null hypothesis
of linearity instead of independence.

Acknowledgements

The authors wish to thank the Netherlands’ Organisation for Scientific Research
(NWO) for their financial support. We thank an anonymous referee for sugges-
tions, which substantially improved the manuscript.

14 Studies in Nonlinear Dynamics & Econometrics Vol. 6 [2002], No. 2, Article 2

http://www.bepress.com/snde/vol6/iss2/art2



References

Aparicio, F. M., and A. Escribano Aparicio and Escribano (1998): ”Information-
theoretic analysis of serial dependence and cointegration,” Studies in Nonlin-
ear Dynamics and Econometrics, 3, 119–140.

Auestad, B., and D. Tjøstheim Auestad and Tjøstheim (1990): ”Identification of
nonlinear time series: First order characterization and order determination,”
Biometrika, 77, 669–687.

Barnard, G. A. Barnard (1963): ”Discussion of a paper by M. S. Bartlett,”
Journal of the Royal Statistical Society B, 25, 294.

Beran, R. Beran (1988): ”Prepivoting test statistics: a bootstrap view of
asymptotic refinements,” Journal of the American Statistical Association,
83, 687–697.

Besag, J., and P. J. Diggle Besag and Diggle (1977): ”Simple Monte Carlo tests
for spatial pattern,” Applied Statistics, 26, 327–33.

Blum, J. R., J. Kiefer, and M. Rosenblatt Blum et al. (1961): ”Distribution
free tests of independence based on the sample distribution function,” Annals
of Mathematical Statistics, 32, 485–98.

Brock, W. A., W. D. Dechert, J. A. Scheinkman, and B. LeBaron Brock et
al. (1996): ”A test for independence based on the correlation dimension,”
Econometric Reviews, 15, 197–235.

Chan, N. H., and L. T. Tran Chan and Tran (1992): ”Nonparametric tests for
serial dependence,” Journal of Time Series Analysis, 13, 19–28.

Cheng, B., and H. Tong Cheng and Tong (1991): ”On consistent nonparametric
order determination and chaos,” Journal of the Royal Statistical Society B,
54, 427–449.

Delgado, M. A. Delgado (1996): ”Testing serial independence using the sample
distribution function,” Journal of Time Series Analysis, 17, 271–285.

Diks, C. and H. Tong Diks and Tong (1999): ”A test for symmetries of multi-
variate probability distributions,” Biometrika, 86, 605–614.

Engen, S. and M. Lilleg̊ard Engen and Lilleg̊ard (1997): ”Stochastic simulations
conditioned on sufficient statistics,” Biometrika, 84, 235–40.

Granger, C. W. and J. L. Lin Granger and Lin (1994): ”Using the mutual
information coefficient to identify lags in nonlinear models,” Journal of Time
Series Analysis, 15, 371–384.

Hjellvik, V. and D. Tjøstheim Hjellvik and Tjøstheim (1995): ”Nonparametric
tests of linearity for time series,” Biometrika, 82, 351–368.

15Diks and Manzan: Tests for Serial Independence and Linearity

Produced by The Berkeley Electronic Press, 2002



Hjellvik, V., Q. Yao, and D. Tjøstheim Hjellvik et al. (1998): ”Linearity
testing using polynomial approximation,” Journal of Statistical Planning and
Inference, 68, 295–321.

Kullback, S. Kullback (1959): Information Theory and Statistics. New York:
Wiley & Sons.

Potter, S. Potter (1995): ”A nonlinear approach to US GNP,” Journal of
Applied Econometrics, 10, 109.

Prichard, D. and J. Theiler, Prichard and Theiler (1995): ”Generalized redun-
dancies for time series analysis,” Physica D, 84, 476–493.

Robinson, P. M. Robinson (1991): ”Consistent nonparametric entropy-based
testing,” Review of Economic Studies, 58, 437–453.

Savit, R. and M. Green Savit and Green (1991): ”Time series and dependent
variables” Physica D, 50, 95–116.

Shannon, C. E. Shannon (1948): ”A mathematical theory of communication”
Bell Systems Technical Journal, 27, 379–423, 623–656.

Skaug, H. J. and D. Tjøstheim Skaug and Tjøstheim (1993a): ”A nonparamet-
ric test of serial independence based on the empirical distribution function,”
Biometrika, 80, 591–602.

Skaug, H. J. and D. Tjøstheim Skaug and Tjøstheim (1993b): ”Nonparametric
tests of serial independence” In Developments in Time Series Analysis: In
Honour of Maurice B. Priestley (ed. T. Subba Rao), pp. 207–230. Chapman
& Hall, London.
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T = 100 T = 200

Model ε m = 1 2 3 4 1 2 3 4

0.5 0.91 0.03 0.02 0.01 1.00 0.02 0.02 0.01

AR(1) 1.0 0.97 0.03 0.02 0.02 1.00 0.02 0.01 0.02

1.5 0.98 0.04 0.02 0.02 1.00 0.04 0.01 0.02

0.5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

ATM 1.0 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

1.5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.5 0.26 0.26 0.02 0.02 0.50 0.58 0.04 0.01

BILINEAR 1.0 0.37 0.54 0.04 0.03 0.63 0.86 0.07 0.03

1.5 0.37 0.58 0.05 0.02 0.64 0.88 0.05 0.02

0.5 0.92 0.02 0.02 0.01 1.00 0.03 0.03 0.01

NLAR(1) 1.0 0.97 0.03 0.02 0.02 1.00 0.03 0.03 0.02

1.5 0.96 0.04 0.02 0.02 1.00 0.07 0.03 0.02

0.5 0.07 0.09 0.38 0.01 0.06 0.09 0.81 0.01

NLAR(3) 1.0 0.07 0.10 0.89 0.02 0.06 0.10 1.00 0.02

1.5 0.06 0.10 0.93 0.02 0.06 0.08 1.00 0.02

0.5 0.61 0.04 0.02 0.02 0.91 0.05 0.04 0.01

TAR 1.0 0.62 0.06 0.03 0.03 0.89 0.07 0.03 0.03

1.5 0.45 0.08 0.03 0.04 0.73 0.11 0.04 0.03

0.5 0.73 0.05 0.02 0.02 0.98 0.06 0.02 0.02

ARCH 1.0 0.86 0.06 0.02 0.03 0.99 0.08 0.03 0.02

1.5 0.86 0.07 0.02 0.01 0.99 0.10 0.02 0.02

0.5 0.47 0.21 0.06 0.02 0.61 0.36 0.15 0.07

GARCH 1.0 0.64 0.40 0.17 0.06 0.90 0.68 0.37 0.13

1.5 0.63 0.38 0.18 0.07 0.89 0.72 0.41 0.16

Table 3: Power of the independence test at the 5% nominal level for models in Table 2.
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Model m = 1 2 3 4

AR(1) 0.97 0.96 0.94 0.92

ATM 1.00 1.00 1.00 1.00

BILINEAR 0.37 0.60 0.62 0.61

NLAR(1) 0.97 0.94 0.91 0.87

NLAR(3) 0.07 0.10 0.41 0.55

TAR 0.62 0.60 0.53 0.46

ARCH 0.86 0.82 0.77 0.71

GARCH 0.64 0.70 0.73 0.75

Table 4: Power of the BDS test at the 5% nominal level for models in Table 2

(T = 100, ε = 1.0).

T = 100 T = 200

ε m = 1 2 3 4 1 2 3 4

0.5 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.05

1.0 0.06 0.04 0.05 0.05 0.06 0.04 0.05 0.05

1.5 0.03 0.05 0.04 0.06 0.01 0.05 0.03 0.04

2.0 0.00 0.05 0.05 0.05 0.00 0.04 0.05 0.05

Table 5: Size of the linearity test at the 5% nominal level for an AR(1) with parameter

equal to 0.6.
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T = 100 T = 200

Model ε m = 1 2 3 4 1 2 3 4

0.5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

ATM 1.0 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

1.5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

V23 1.00 1.00

0.5 0.24 0.21 0.04 0.03 0.53 0.55 0.04 0.02

BILINEAR 1.0 0.36 0.53 0.05 0.02 0.63 0.85 0.05 0.02

1.5 0.40 0.59 0.04 0.03 0.65 0.89 0.05 0.03

V23 0.73 0.89

0.5 0.26 0.03 0.04 0.03 0.47 0.03 0.05 0.05

NLAR(1) 1.0 0.29 0.05 0.03 0.04 0.48 0.04 0.05 0.05

1.5 0.11 0.06 0.04 0.04 0.17 0.06 0.06 0.05

V23 0.13 0.32

0.5 0.04 0.05 0.11 0.05 0.03 0.06 0.19 0.04

NLAR(3) 1.0 0.05 0.05 0.18 0.06 0.03 0.05 0.31 0.05

1.5 0.06 0.04 0.11 0.06 0.04 0.04 0.12 0.05

V23 0.15 0.26

0.5 0.57 0.03 0.02 0.02 0.89 0.04 0.03 0.02

TAR 1.0 0.58 0.04 0.03 0.04 0.85 0.08 0.03 0.03

1.5 0.40 0.06 0.04 0.05 0.64 0.11 0.05 0.04

V23 0.49 0.80

0.5 0.73 0.04 0.02 0.01 0.96 0.06 0.01 0.01

ARCH 1.0 0.85 0.06 0.03 0.02 0.99 0.11 0.02 0.02

1.5 0.86 0.07 0.03 0.03 0.99 0.13 0.03 0.03

0.5 0.50 0.19 0.05 0.02 0.83 0.42 0.10 0.02

GARCH 1.0 0.61 0.41 0.18 0.07 0.90 0.71 0.38 0.13

1.5 0.63 0.43 0.26 0.12 0.91 0.75 0.47 0.22

Table 6: Power of the linearity test at the 5% nominal level for models in Table 2.
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ε m = 1 2 3 4 5

Independence Test

0.5 0.02 0.02 0.19 0.15 0.49

1.0 0.01 0.02 0.04 0.02 0.11

1.5 0.01 0.05 0.16 0.02 0.15

Linearity Test

0.5 0.18 0.02 0.23 0.22 0.42

1.0 0.02 0.01 0.01 0.01 0.13

1.5 0.03 0.04 0.12 0.01 0.13

Table 7: p-values of the independence and linearity test for the quarterly growth rate

of real US GNP (T = 216).
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