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Abstract

We investigate the finite-sample performance of model selection criteria for local
linear regression by simulation. Similarly to linear regression, the penalization term
depends on the number of parameters of the model. In the context of nonparamet-
ric regression, we use a suitable quantity to account for the Equivalent Number of
Parameters as previously suggested in the literature. We consider the following crite-
ria: Rice T, FPE, AIC, Corrected AIC and GCV. To make results comparable with
other data-driven selection criteria we consider also Leave-Out CV. We show that the
properties of the penalization schemes are very different for some linear and nonlin-
ear models. Finally, we set up a goodness-of-fit test for linearity based on bootstrap
methods. The test has correct size and very high power against the alternatives inves-
tigated. Application of the methods proposed to macroeconomic and financial time

series shows that there is evidence of nonlinearity.
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1 Introduction

Recently, the application of nonlinear methods to economic and financial data has gathered
increasing interest. The seminal work of Hamilton (1989) on markov switching models
and the successful application to US GNP data emphasized the importance of considering
nonlinear effects. The range of nonlinear models used has widened rapidly and Granger
(2001) is a recent survey of the different approaches and results.

A flexible way to model nonlinearities in the data are nonparametric regression tech-
niques. Their main advantage is the adaptability in capturing the dependence structure
in the data without relying on a specific parametric family. However, their finite samples
properties in the high-dimensional case are very misleading, a situation known in the lit-
erature as the “curse of dimensionality”. Many dimensionality reduction techniques, such
as additivity, have been proposed to circumvent this problem. Fan and Yao (2003) is a
recent review of these techniques in a time series framework. Applications of nonparamet-
ric regression methods to economic time series are Diebold and Nason (1990) to weekly
exchange rates, Mizrach (1992) to daily exchange rates and Pagan and Schwert (1990) to
estimate the conditional variance of stock prices.

In this paper, we investigate the performance of selection criteria for nonparametric
regression. In a time series context, there are 2 parameters to select: the lag order and the
bandwidth. Both of them affect the complexity of the model, that is, the number of para-
meters used to fit the data. The selection criteria try to balance between goodness-of-fit
and the number of parameters. Using a quantity that captures the number of parameters
implied by both the lag order and the bandwidth, it is possible to extend the selection
criteria frequently used in linear analysis. In particular, we investigate the performance of
the selection criteria in moderate samples and for large orders where the “curse of dimen-
sionality” is a relevant issue. We find that most of the criteria perform reasonably well.
However, Akaike Information Criteria (AIC) and Final Prediction Error (FPE) perform
very poorly because they tend to overfit, that is, to use too many parameters compared
to optimal.

The paper is organized as follows: in Section (2) we describe the local linear smoother
and the selection criteria we use to choose order and bandwidth. Section (3) shows simula-
tion results concerning various linear and nonlinear autoregressive models. In Section (4) a
goodness-of-fit test for linearity is proposed and the appropriateness of the selection criteria
is emphasized. Section (5) investigates the presence of nonlinearity in some macroeconomic

time series. Finally, Section (6) concludes.



2 The Method

Assume {x;}{". . is a univariate stationary time series generated by the following non-

linear autoregressive model of order p
Tip1 = m(Xy) + €41,

where m(z) is a function of unknown form, X; = (4, ..., ;_p41)" denotes the p-dimensional
vector of lagged values of the time series and ¢; is an i.i.d. disturbance term with mean 0

and variance o2

. This general form encompasses the AR model as well as many nonlin-
ear time series models like thresold autoregressive (TAR) and exponential autoregressive
(EXPAR). We estimate m(x) using nonparametric regression techniques. In particular,
we adopt the local linear approach proposed by Cleveland and Devlin (1988) and Fan and
Gijbels (1996). The local linear estimator using nearest-neighbors bandwidth is known in

the literature as LOESS and it minimizes
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where m(x) = &, K(+) is the tricube kernel defined as

K () (1—u3)? for0<u<1
u) =
0 otherwise,

| - || indicates the euclidean distance and

dk(x): ||Xac(l~c)_x|| . for0<h<1
|| Xm(n) - || hr»  for h > 1.

where X 1) denotes the k-th nearest neighbor of x, h is the bandwidth and & is the integer
part of (hn). In the LOESS approach it is often used a tricube kernel but other kernels
might deliver similar results. The smoothing scheme can be described as follows: if X; is
among the k nearest neighbors of the design point x, it receives a positive weight given
by the tricube kernel K (-). Otherwise, it receives a null weight. A practical advantage of
nearest neighbors bandwidths, compared to fixed bandwidths, is that they deliver more
reliable and stable variances of the fit in regions where the data are sparse. If we let the
bandwidth A — oo, we include all the data in the regression and the local linear model
approaches the linear AR model.

We consider data-driven (or automatic) methods to select i such as minimizing the RSS

(Residuals Sum of Squares)
1 n—1 R
LY e — (X, )
t=0

The RSS trivially achieves a minimum for A — 0 because it implies m(X;) — ¢+1. An

approach to solve this problem is the Leave-One-Out Cross-Validation method, which



minimizes the following function

n—1
CV(h) = % Z{xtﬂ - mh,—t(Xt)}Q: (3)
=0

where my, () indicates the fitted value obtained by excluding the ¢-th observation. In a
time series context, Hardle and Vieu (1992) proved the asymptotic optimality of the selec-
tion method. An alternative approach consists of multiplying the RSS by a penalization
factor that corrects the tendency of h to go to 0. These methods are inspired by selection

criteria used for linear models that choose the order p that minimizes
SC(p) =log RSS + ¢(p), (4)

where the first term indicates the goodness-of-fit of the model and the second term pe-
nalizes the inclusion of more parameters, measured by p. This approach can be extended
to nonparametric regressions because they are linear smoothers. The fitted regression
function can be expressed as

y = Hy,

where y = (21, ...,2,)" and H is the nxn hat matrix that depends only on lagged values.
Similarly to the linear case, we define the number of parameters involved in the regression
by

If the bandwidth tends to co then ¢r(H) will approximate p. However, for h — 0 it will
approach n, the case in which we fit as many parameters as data points. The extension

to the nonparametric case of the criterion in (4) is
SC(m) =log RSS + ¢(m), (5)

where 7 quantifies the complexity of the model implied by both the choice of the band-
width, h, and the number of lags, p. Considering more lags and smaller bandwidths,
increases m and ¢(m) attributes a larger penalization to the goodness of fit measure. In
the literature 7 is called the Equivalent Number of Parameters (ENP) by Cleveland and
Devlin (1988), to stress the analogy with the linear regression case.

There are many proposals concerning the form of the penalization function ¢(-). We

consider here the most often used:
1. Akaike Information Criteria (AIC): ¢(m) = 27

2. Corrected AIC (AICC): ¢(n) = 247

l-m—=
n

3. Final Prediction Error (FPE): ¢(7) = log (H—“)



5. Rice T (T): ¢(m) = —log (1 — 27)

A discussion of these criteria can be found in Hérdle (1990). A bias corrected version
of AIC, indicated as AICC, has been recently proposed by Hurvich et al. (1998). Selection
criteria are used in nonparametric regression to select order or bandwidth and in theoret-
ical work these two problems are kept separate. Some references on lag selection using
nonparametric regression are Tschernig and Yang (2000), Tjostheim and Auestad (1994)
and Cheng and Tong (1991); for bandwidth selection see Hurvich et al. (1998), Yao and
Tong (1998) and Hérdle and Vieu (1992).

In this paper, we adopt the point of view of an applied analyst that faces the problem
of selecting both bandwidth and lag order. Instead of considering them separately, we
jointly select these 2 parameters by minimization of Equation (5). In the following section

we compare via simulation the finite-sample performances of the selection criteria.

3 Simulation

We simulate 1000 samples of length 100 for linear and nonlinear models. We consider a
maximum number of lags of 4 and the bandwidth h is varied from 0.1 to 1 at steps of
0.02. Increasing the order p we consider more lags in the regression function instead of the
procedure adopted by Tjgstheim and Auestad (1994) that performs a specification search
for the lags to be included in the estimation.

For all simulated models, the noise term ¢; is distributed standard normally. We
compare the ENP selected by the selection criteria, 7", to the optimal ENP, 7°P!, that
is selected by minimizing the Average Squared Error (ASE) defined as

=3 () — m(0)? ()

with respect to h, whereas the order p is assumed to be known. The bandwidth selected
by minimizing 6, h°P!, should be interpreted as the optimal degree of smoothing for the
simulated time series. We report also the average (over the simulations) of the ratio of

the ASE calculated for the different selection criteria and for the optimal bandwidth.

AR(1) The AR(1) process is defined as
Ter1 = 0.6z + €441.

The top plot in Figure (1) shows the smoothed density of the log-ratio of the ENP

selected by the criterion, 7%, to the optimal one, m°P.

The plot gives information on
the performance of the criteria in selecting h and p with respect to the optimal choices.
Positive values of the log-ratio, log(7¢" /7°P!) imply that the criterion selects more para-

meters than optimal, a situation that we indicate as overfitting. However, if the log-ratio



is negative, the criterion is affected by underfitting, that is, it selects a parsimonious model

rit may be higher than the optimal value (over-

compared to optimal. The chosen ENP, 7
fitting) because the selected bandwidth, h", is too small and/or because the criterion
selected a large number of lags, p“. The phenomenon of small bandwidth compared to
optimal is called undersmoothing. The interpretation is similar to the linear case, with
the only difference of the additional role played by the bandwidth in increasing the (equiv-
alent) number of parameters in the regression. The middle plot in Figure (1) shows the

density of the selected bandwidth for the different selection criteria. Finally, the Table

reports the frequency of selection of the order and the average ASE ratio.
Figure (1) here

Figure (1) clearly suggests that AIC and FPE have a tendency to overfit. The dis-
tribution of log(w°"/7°Pt) for AIC and FPE is bimodal with one mode around zero and
the other in the positive region. They select too frequently an ENP that is larger than
optimal. The distributions for the other criteria are centered around zero but are skewed
to the right.

The reason for the bad performance of AIC and FPE are clear from the distribution
of her® and p®. These criteria select often bandwidth that are small compared to the
smoothing required by the model. Instead, the other criteria correctly select most often
the largest bandwidth of 1 that corresponds to give an equal weight to all the observations.
The Table shows the frequency of selection of the order. AIC is more likely to select order
4 (49% of the times) than the true order 1 (36%). A similar problem occurs also for
FPE, that selects order 4 in 20% of the simulations. T and AICC select the true order in
approximately 77% of the cases while GCV and CV are correct in 72 and 68%, respectively.
In term of ASE it is also clear the poor performance of AIC and FPE that score the highest
error. Instead, the lowest error is achieved by AICC and by Rice T criteria.

Summarizing, for the AR(1) model we found that severe overfitting occurs for AIC
and FPE. It arises both because of undersmoothing (the bandwidth selected is too small)
and too frequent selection of large orders. The best criteria are AICC and T that perform
reasonably well both in the selection of the bandwidth and order. The skewness in the
distribution of log(7erit/mopt) is probably due to a small sample effect that disappears for

larger samples.

AR(1)-GARCH(1,1) If we allow for heteroscedasticity in the disturbance term of the
GARCH(1,1) type, the AR(1) process becomes

Tty]1 = 0.6.%‘t + €t+1, €t41 ™~ N(O, ht+1)

hip1 =1+ 0.1€2 + 0.8h,.



The heteroscedasticity in the innovations does not change the previous analysis for
the AR(1) case. Figure (2) shows that AIC and FPE are affected by overfitting that
can be partly explained by undersmoothing, that is, the selection of bandwidths that are
smaller than optimal. The other criteria are slightly skewed to the right as in the case

with homoscedastic innovations. This is probably due to the effect of the selection of p°.

Figure (2) here

The table confirms that AIC and FPE select often the largest order. AICC and T
perform better and select the correct order in approximately 75%. This suggests that AIC
and FPE do not penalize enough the selection of a large number of parameters and choose

too often a small bandwidth or a large order.

TAR(1) The model is
Tyl = —05.%‘1;_[(.%‘1; < ].) + 06[13‘,5]([13‘,5 > 1) + €41

Figure (3) confirms that also for this nonlinear model AIC and FPE tend to overfit.
The distributions of log (7" /7°Pt) for these criteria are bimodal and a large part lays in

the positive region.
Figure (3) here

The other criteria have a distribution centered around zero but with a slight skewness
in the left tail that indicates a tendency to underfit. The distribution of A" shows that
AICC, GCV and T are likely to choose a bandwidth in the range 0.3 to 0.8 while AIC and
FPE most often select the smallest value in the range. Also in this case it is clear that
undersmoothing seriously affects the performances of the criteria.

The table shows that AIC selects often larger orders than optimal: lag 4 is selected
40% of the times while the first order (the true order) in 49% of the cases. FPE behaves
better selecting in 74% of the simulations the correct order. The other criteria identify
correctly the true lag more than 90% of the times. We conclude that, for AIC, the order
selection contributes to the bimodality of the distribution of log(7<"* /7). This is less
the case for FPE and the other criteria that have lower mean ASE. T and AICC are again

the best in term of this measure of error.

EXPAR(1) The model is
41 =4{0.5+1.3 exp(—0.5mt2)}xt + €41-
The model has nonlinear dependence in the first lag.

Figure (4) here



Figure (4) shows that also this model is characterized by the bimodality of the dis-
tribution of log(m" /m°P!) when using AIC and FPE selection criteria. The distributions
for the remaining criteria are centered around zero and are not significantly skewed. The
density of the bandwidth for most criteria are centered around 0.55 while for AIC and
FPE there is significant undersmoothing. AICC and T perform best in term of mean
ASE. They select the correct order in approximately 90% of the simulations. Instead,
AIC correctly select the right order only 46% of the times. The weak penalization of AIC
and FPE is also clear from this Table because they have a tendency to oversmooth (that

is, to select orders too large).

EXPAR(2) The model is
zip1 = {0.5 4 1.3exp(—0.527_ )}t + €141,

that has the same structure of the previous model but the dependence occurring on the
first 2 lags. This allows to test the performance of the selection criteria in identifying the

correct order in the nonlinear case.
Figure (5) here

The top plot of Figure (5) shows that also for this model AIC and FPE are affected
by overfitting. In this case, also GCV and CV are slightly biased toward using too many
parameters. T and AICC seem to behave correctly. In term of the selected bandwidth, it
is clear that AIC and FPE severely undersmooth because of the weak penalization used.
GCV confirms that it has a slight propensity to undersmooth while T and AICC do not
show any problem related to the choice of h. Most of the criteria correctly identify the
second order dependence in the simulated time series. T and AICC select order two in
95% of the cases, GCV and CV in around 86%, FPE in 68% and AIC in only 45%. Again,
AIC selects the true order and order four with approximately the same frequency. In term
of mean ASE, the best performing are T and AICC while AIC and FPE are the worst.

4 A Test for Linearity

We set up a test for linearity based on the comparison of the goodness-of-fit of the para-
metric and nonparametric regression. The specification test can be interpreted as a Gen-
eralized Likelihood Ratio Test in the sense of Fan et al. (2001). Recently, Cai et al. (2000)
and Lee and Ullah (2002) adopted a similar testing strategy. The null hypothesis of the
test is

Ho : E(ze1]X:) = X760

Hy : E(z441]Xe) = m(Xa),



where 0 is the coefficients vector of the AR(p) model and m(+) is a nonlinear function. Let
RSST and RSSNT denote the parametric and nonparametric RSS, respectively, defined

as

1 n—1 . 1 n—1 R
RSST == Z{$t+1 — Xt9}2 == Z{uﬁ1}2,
20 20

1 n—1 R 1 n—1 R
RSSNP = — Z{xt-i-l — (X)) = = Z{ut]\ﬁ}z
n t=0 n t=0

We use the same selection criteria in order to choose the lag order (and the bandwidth)
of the parametric and nonparametric regressions.
The test statistic is defined as

RSSY — RSSNF
B="Fgsevr "

To evaluate the significance of the test statistic we use bootstrap methods. We account
for the heteroscedasticity that is observed in many economic time series by resampling the
residuals of the nonparametric regression using the wild bootstrap approach proposed by

Liu (1988). The test procedure is as follows:
1. calculate the test statistic, B, for the original time series.

2. generate bootstrap innovations, uj, |, from the centered fitted residuals of the non-

: ion g4 — NP 15 wm=1 NP
parametric regression, ;41 = U] — 7 2 _p—q Uy, aS

aiiyy1  with probability p = (v/5 4 1)/(2v/5)
but4q,  with probability 1 — p,

Uiy =

where a = —(v/5 —1)/2 and b = (v/5 + 1)/2.
3. generate iteratively a new bootstrap time series as
v = X70+upy,

where X is a p-dimensional vector of lagged values.

5. calculate the test statistic B* on the bootstrap time series using the same orders

and bandwidth selected for the original time series!.

6. Repeat steps (1) and (2) M times.

7. Calculate the one sided p-value as

1+ #{B* > B}
14+ M ’

and reject if p < o, where « denotes the significance level.

p=

"We avoid the selection of the bandwidth and the order for each of the bootstrap replications for
computational reasons. We think that this simplyfying assumption will not have dramatic effects on our

results.
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We perform a one-sided test because deviations from the null hypothesis are expected to
occur for positive values of the test statistic. The consistency of the bootstrap procedure
derive from the fact that the residuals of the nonparametric regression are always consistent

both under the null and the alternative. See Cai et al. (2000) for details.
Table (1) here

We simulate 1000 samples of length 100 and the number of bootstrap replications set
to 199 for the models examined in the previous Section. Given the results in the previous
section, we investigate the size and power properties of the test only for the T, AICC,
GCV and CV. Table (1) shows that the test has good size properties also in the presence of
heteroscedasticity that is known to cause size distortions. Under the alternative examined,
the test has high power: for the AICC selection criteria it is 96% against TAR(1), 85%
against EXPAR with dependence in the first lag and 91% when the dependence is in the

second lag.

5 Empirical Applications

The properties of the test for linearity suggest that AICC, T and GCV have reasonable
power against a wide range of dependence structures, such as linear and nonlinear models.
We apply the previous methods to investigate the presence of nonlinearity in U.S. macro-
economic and financial time series. In the order selection we extend the search up to 6
lags. For all series, we test the growth rate of the variable.

We plot the selection criterion, SC(m) in Equation (5), against h and for p given.
It allows us to qualitatively evaluate the nonlinearity in the data by comparing the error
curve implied by the parametric and nonparametric regression. We normalize the criterion
by the log of the standard deviation of the time series: if it has a value close to 1, there
is no evidence for (linear or nonlinear) dependence in the time series. On the other hand,
there is strong evidence of dependence when the normalized SC(7) is smaller than 1. We
plot only the selection criterion function for AICC. The graphical evidence of nonlinearity
contained in the error curves is evaluated statistically using the linearity test.

We analyzed the following time series:

GNP GNP (Gross National Product) in real terms and seasonally adjusted from the
first quarter of 1947 to the third quarter of 2001. Some nonlinear models that have been
proposed for this time series are TAR models by Potter (1995) and Tiao and Tsay (1994)
and markov-switching models by Hamilton (1989). The common feature of these models is
that they explain the time series in term of transition (deterministic or stochastic) between

different regime (expansion and recession).
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Figure (6) here

The plot in Figure (6) compares the SC(m) of the nonparametric regression to that
of a linear AR model. The normalized error curve of the nonparametric regression using
AICC or T criteria achieves its minimum at h“® = (0.86 and the goodness-of-fit test
rejects at 10% the null hypothesis of linearity. T and AICC give a similar answer selecting
a moderate bandwidth and pointing to dependence in the first 5 lags. However, GCV

selects a smaller bandwidth and a higher lag order. It has also a smaller p-value.

Industrial Production from the first quarter of 1947 to the end of 2001. The data are

seasonally adjusted.
Figure (7) here

In Figure (7) it is clear that the nonparametric regression lowers significantly the error
compared to the linear regression. T and AICC select lags up to 5 and A" = 0.74. GCV
selects a smaller bandwidth whereas CV a higher one. The test for linearity strongly
rejects the null hypothesis for all the selection criteria. Hence, we can conclude that for

US industrial production there is robust evidence of nonlinear structure.

Unemployment Rate from the first quarter of 1947 to the last quarter of 2001. The
data are seasonally adjusted. For previous nonlinear analysis of this time series see Mont-
gomery et al. (1998). Figure (8) shows that the selection criterion curve achieves a much

lower normalized error compared to the AR model.
Figure (8) here

The minimum for AICC and T occurs at h" = 0.66 and p* = 6 while for GCV
the optimal bandwidth is 0.56. The linearity test rejects at 1% significance level the null
hypothesis. Hence, the smaller error achieved by the nonparametric regression in the plot
of SC(7) is statistically significant. For this time series CV gives results different from the
selection criteria: it selects a large value for the bandwidth such that the nonparametric
fit approximate very closely the linear one. Consequently, the linearity test does not reject

the null.

T-bills Monthly 3-months Treasury Bills interest rates from 1950 to the end of 2001.
The plot in Figure (9) shows that the normalized criterion of the linear model is very close

to 1.

Figure (9) here
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The nonparametric regression improves consistently the fit by achieving a much lower
error. The selected bandwidth (for p® = 6) is 0.70 for T, 0.66 for AICC and 0.32 for
GCV. There is significant evidence to reject linearity for the returns on the Treasury Bills:
the test for linearity rejects for all three criteria used. For this series, a linear model
performs poorly but a nonparametric approach is able to capture the significant nonlinear

structure in the data.

S&P 500 S&P500 Index from the first quarter of 1947 to the third quarter of 2001.
Figure (10) here

The selection criterion curve for both the parametric and nonparametric regressions
are very close to each other and to 1. A qualitative interpretation of the plot suggests
no evidence to reject linearity. All the criteria select the same order and bandwidth.
The p-values of the linearity test are equal to 0.16. Hence, we can conclude that there
is no evidence to reject linearity. The test shows that there is no evidence of nonlinear

dependence in the conditional mean of the returns on the S&P500 index.

DM/$ DM/$ exchange rate from the first quarter of 1974 to the end of 2001. The plot
in Figure (11) shows that the SC(7) achieves a minimum at the largest bandwidth of 1.

Figure (11) here

The value of the normalized criterion is close to the linear criterion and close to 1. Thus,
also for this series we should expect weak dependence. The linearity test suggests that
for T and AICC there is no evidence to reject the null hypothesis. Instead, GCV achieves
a minimum for A" = 0.82 and a p-value of 0.09. The simulation study indicates that
T and AICC have better finite sample properties compared to GCV. Hence, we attribute
more relevance to the results of T and AICC and conclude that there is no evidence of

nonlinear dynamics for this series.

Yen/$ Yen/$ exchange rate for the same period of DM/S.
Figure (12) here

The normalized SC(7) curve in Figure (12) suggests that also for this exchange rate
there is no evidence of linearity. All the criteria agree in selecting a bandwidth of 1 and
order 1. The p-values of the test statistic are large enough to conclude that we cannot

reject the null hypothesis of linearity.

13



6 Conclusion

In this paper we show that nonparametric regression is a useful tool to detect nonlinearities
in time series. As a first step in the analysis of time series, it guarantees flexibility in the
type of dependence it captures. In addition, the simulation results indicate that they
are reasonably accurate in moderate samples. We show that selecting bandwidth and lag
order can be reliably carried out by using AICC or T criteria, which are not affected by
significant problems of overfitting, in contrast to AIC and FPE. In addition, a goodness-of-
fit test based on the comparison of parametric and nonparametric regression is a powerful
test to detect deviations from the linearity assumption. If the linearity test rejects the
null hypothesis, further steps could be to apply a battery of parametric linearity tests to
identify which nonlinear dependence structure is more suitable to explain the time series
dynamics. The application of nonparametric autoregression to macroeconomic time series
shows that there is statistical evidence of nonlinearity for some of them. For growth rates
of US real GNP, Industrial Production and Unemployment Rate the null hypothesis of
linearity is rejected when using T and AICC as selection criteria. However, returns of
financial time series do not show evidence to reject linearity with the exception of the US

T-Bills for which there is strong evidence of nonlinearity.
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Figure 1: AR(1) model: smoothed densities of the log of w¢"* /7°P* (top), smoothed densities of
hertt (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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T | FPE | AIC | AICC | GCV || CV
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p=2] 016 | 0.18 | 0.11 | 0.16 0.17 | 0.18
p=3| 0.08| 0.11 | 0.08 | 0.07 0.09 | 0.09
p=41]0.02] 016 | 0.47 | 0.02 0.04 | 0.05
ASE | 3.00 | 6.06 | 8.31 2.89 3.31 || 3.27

Figure 2: AR(1)-GARCH(1,1) model: smoothed densities of the log of m“"* /7°P! (top), smoothed

densities of h°"® (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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Figure 3: TAR(1) model: smoothed densities of the log of w"" /m°Pt
hertt (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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T | FPE | AIC | AICC | GCV | CV
p=1|089] 068 | 046 | 091 0.84 | 0.82
p=2]0.09| 0.14 | 0.09 | 0.08 0.12 | 0.14
p=3|0.01] 0.06 | 0.05 | 0.01 0.03 | 0.03
p=4]0.01] 012 | 040 | 0.00 0.01 | 0.01

ASE || 143 | 1.69 | 1.91 1.42 147 | 1.47

Figure 4: EXPARI model: smoothed densities of the log of 7" /7°Pt (top), smoothed densities
of h*™® (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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Figure 5: EXPAR2 model: smoothed densities of the log of 7" /7°Pt (top), smoothed densities
of h*™® (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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T | AIcC | Gev || cv
AR(1) 0.06 | 0.06 | 0.07 || 0.06

AR(1) — GARCH(1,1) || 0.07 | 0.07 | 0.08 || 0.08
TAR(1) 0.96 | 0.96 | 0.96 | 0.96
EXPAR(1) 0.84| 085 | 0.85 || 0.83
EXPAR(2) 091 | 091 | 095 || 0.95

Table 1: Frequency of rejection of the null hypothesis of linearity at 5% significance level.

" h  p pun p—value

ol T 0.86 5 4 0.06
AICC | 0.86 5 4 0.06

oo GCV | 066 6 4 0.01

il Cv 087 5 1 0.03

L L L L
06 07 08 09 10

h

L L L
03 04 05

Figure 6: Plot of SC(h,p), selected parameters and p-values of the linearity test for US GNP.

o h  p pun p—value
T o074 5 5 0.01
AICC | 0.74 5 5 0.01
T GCV | 0.52 5 b) 0
cv (090 4 5 0.1

L L L L L L L L
02 03 04 05 ;08 07 08 09 10

Figure T7: Plot of SC(h,p), selected parameters and p-values of the linearity test for US Industrial

production.
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il h  p pin p—value
T 0.66 6 4 0.01

: AICC | 0.66 6 4 0.01

" GCV | 056 6 4 0.01
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Figure 8: Plot of SC(h,p), selected parameters and p-values of the linearity test for the unem-

ployment rate.

uf h P Pun p— value
T 0.70 6 6 0.01
) VP AICC | 066 6 6 0.01
0ol GCV | 032 6 6 0.01
(A% 1 2 1 0.10

Figure 9: Plot of SC(h,p), selected parameters and p-values of the linearity test for T-bills.

1 h  p pin p—wvalue
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Figure 10: Plot of SC(h,p), selected parameters and p-values of the linearity test for S&P500.
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ur h  p pin p—value
T 1 3 3 0.18
AICC| 1 3 3 0.18
GCV | 082 5 3 0.09
cvV (088 3 3 0.28

Figure 11: Plot of SC(h,p), selected parameters and p-values of the linearity test for DM/US

exchange rate.
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Figure 12: Plot of SC(h,p), selected parameters and p-values of the linearity test for Yen/US

exchange rate.
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