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Abstract

The interest in density forecasts (as opposed to solely modelling the conditional mean) arises

from the possibility of dynamics in higher moments of a time series as well as, in some appli-

cations, the interest in forecasting the probability of future events. By combining the idea of

Markov bootstrapping with kernel density estimation, this paper presents a simple nonparamet-

ric method for estimating out-of-sample multi-step density forecasts. The paper also cosiders a

host of evaluation tests to examine dynamical misspecification of estimated density forecasts by

targeting autocorrelation, heteroskedasticity and neglected nonlinearity. These tests are useful

as rejections of the tests give insights into ways to improve a particular forecasting model. In

an extensive Monte Carlo analysis involving a range of commonly used linear and nonlinear

time series processes, the nonparametric method is shown to work reasonably well across the

simulated models for a suitable choice of bandwidth (smoothing parameter). Furthermore, the

application of the method to the US Industrial Production series provides multi-step density

forecasts that show no sign of dynamic misspecification.

Keywords: Dynamic misspecification; Evaluation; Kernel smoothing; Markov bootstrap; Multi-step

density forecasts



1 Introduction

Recently, density forecasting has become an important area of research in the analysis of eco-

nomic and financial time series. A density forecast of a realization of a random variable at some

future time is an estimate of the probability distribution of the possible future values of that

variable. In financial applications, the shift in attention toward density forecasts is motivated

mainly by the increased diffusion of risk management practice among financial institutions. Cal-

culating the capital at risk deriving from an asset or a portfolio position requires to predict the

complete conditional density of returns with a particular interest on the left tail of the distrib-

ution. In the area of macroeconomic forecasting, policy analysts are not only interested in the

mean evolution of macroeconomic variables in the future, but also in predicting the probability

of certain events, such as whether inflation will surpass a certain level a year ahead. Granger

and Pesaran (2000a, 2000b) argue that when the interest of the decision-maker is in this type of

events (e.g., an interval forecast) and the loss function is non-quadratic, the use of a conditional

mean forecast (and its evaluation using mean squared errors) is inappropriate. Instead, they

suggest the use of density forecasts along with a nonlinear and/or asymmetric loss function that

captures the preferences of the decision maker.

A common approach to modelling the conditional density is to assume a distributional form

for the error term in a conditional mean model. In this case, the conditional density is fully

characterized by the conditional mean and the distribution of the innovations. However, the

resulting density forecasts do not account for possible time variation in the uncertainty of the

forecast. In finance for example, there is overwhelming evidence of the relevant variation over

time of the second moment of the distribution. An often used approach to deal with this situation

is to assume that the conditional variance follows a GARCH-type specification. In this case,

the conditional density is completely specified by the conditional mean and variance in addition

to a distributional assumption for the error term. Instead, GARCH-type volatility is less of a

concern for macroeconomic variables, where a more relevant role is played by nonlinearities in the

conditional mean and possible heteroskedasticity due to the business cycle condition. Since the

work of Hamilton (1989), there is now extensive evidence of regime-switching behaviour in many

macroeconomic time series. This type of models assume that the economic variable switches (in

a deterministic or stochastic way) between regimes characterized by different dynamics and/or

different properties of the shocks. Some recent surveys of the extensive literature on modelling

and forecasting using nonlinear time series models are provided by van Dijk et al. (2002), Tsay

(2002), Clements et al. (2004) and Teräsvirta (2006).

One of the striking findings on the application of nonlinear models to economic and financial

time series is that they outperform linear models in-sample but fail to improve in out-of-sample

forecast (see de Gooijer and Kumar, 1992, and Clements et al., 2003). The evidence on the
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forecast failure of nonlinear models typically arises when conditional mean forecasts are evaluated

based on mean square errors. However, Pesaran and Potter (1997) argue that nonlinear models

are better in capturing features of higher moments dynamics that are not evaluated when the

comparison criteria narrowly focus on the conditional mean. Now it has become routine to

assess the goodness of density forecast estimates generated by various linear and nonlinear time

series models. Some recent examples are Clements and Smith (2000), Clements and Smith

(2001), Boero and Marrocu (2002), Clements et al. (2003), Siliverstovs and van Dijk (2003),

and Hong et al. (2004). The evaluation and comparison of density forecasts has been made

possible due to the development of appropriate criteria. The most popular of the evaluation

methods is the one first introduced to forecasting by Diebold et al. (1998). Their approach

is very convenient because it transforms the problem of evaluating the forecast density into

the problem of testing the distributional and independence properties of the corresponding

probability integral transform. Various refinements of the proposals of Diebold et al. (1998)

have also been developed and Corradi and Swanson (2006) survey the growing literature on

density forecasts evaluation.

In this paper, we introduce a simple bootstrap-based nonparametric approach to estimate density

forecasts for Markovian time series processes. The approach is an adaptation of nonparametric

bootstrap methods designed for dependent processes (see Rajarshi, 1990, Paparoditis and Politis,

2001 and 2002, Horowitz, 2003, and Chan and Tong, 2004) to the multistep forecasting context.

The assumption of Markov dependence is not restrictive as it encompasses a wide range of

relevant structures implied by various commonly used linear and nonlinear models (e.g., AR and

SETAR models). To examine the forecast performance of the proposed method, we perform an

extensive Monte Carlo analysis by simulating a range of linear and nonlinear time series models.

We evaluate the goodness of the density forecasts using probability integral transform-based

tests. Clements et al. (2003) find that commonly used probability integral transform tests have

low power in detecting the misspecification of linear-model based density forecasts when the

true data generating process is nonlinear. Thus, we supplement the standard testing approaches

with a test for neglected nonlinearity proposed by Teräsvirta et al. (1993). The simulation

results indicate that considering this additional test has high power in uncovering neglected

nonlinearity. On balance, the simulation experiment indicates that the proposed nonparametric

method works reasonably well across the simulated models, provided a suitable bandwidth is

chosen. The application to the US Industrial Production series indicates that the method

provides correctly specified forecasts along the dimensions tested using the PIT approach.

The paper is structured as follows: in Section (2) we describe the method and discuss some

companion issues including bandwidth selection. Section (3) presents the Monte Carlo evidence

of the performance of the method in finite samples. We also discuss the evaluation strategy of

the density forecasts based on probability integral transforms. An empirical application of the

2



method to a macroeconomic series is discussed in Section (4) and Section (5) concludes.

2 Description of the forecasting procedure

In this section, we introduce a simple non-parametric procedure to estimate out-of-sample multi-

step density forecasts. To help motivate our proposal, we first briefly describe the model-based

bootstrap method to generate density forecasts (see, for example, Clements and Smith, 1997).

2.1 A parametric-bootstrap density forecast

Let {Yt; t = 1, . . . , N} be a strictly stationary time series process. A commonly used parametric

specification for modeling Yt is the conditionally heteroskedastic autoregressive model, i.e.

Yt+1 = µ(Xt, θ) + σ(Xt, β)ǫt+1 (1)

where Xt = (Yt, . . . , Yt−p+1)
′ is a p-dimensional vector, µ(·) is the conditional mean of the

process, σ(·) denotes the conditional variance, and ǫt+1 is a disturbance term with zero mean.

The vectors θ and β denote the parameters in the conditional mean and the conditional variance

of the process, respectively. Model (1) includes several familiar time series models such as linear

AR, ARCH, and SETAR.

In the context of model (1), the use of bootstrapping to generate forecasts has received consid-

erable interest in recent years. At least two main motivations can be cited for the popularity of

bootstrapping. First, it does not require a priori assumption about the distribution of the error

term ǫt+1. In addition, for many nonlinear specifications, there are no exact formula for multi-

step ahead forecasts and the bootstrap represents a natural way to approximate the forecast

distributions.

Under the model specification in (1) and conditional on current time period, N , the bootstrap

realization one-step ahead is given by

Y ∗
N+1,b = µ(XN , θ̂) + σ(XN , β̂)ǫ̂∗t+1,b

where ǫ̂∗t+1,b are resampled (bootstrap) residuals, and θ̂ and β̂ are consistent estimators of θ

and β, respectively. The one-step ahead forecast density, denoted by fN+1(·|XN ), at time N is

then given by the empirical density function of the bootstrap realizations, Y ∗
N+1,b, b = 1, . . . , B

where B is the desired number of replications. Denote the forecast horizon by τ . For τ ≥ 2, the

forecasting density can be obtained by applying an iterative scheme. First, the two-step ahead

conditioning vector is updated to X∗
N+1,b = (Y ∗

N+1,b, YN , · · ·, YN−p+2)
′, and then the forecast

density, fN+2(·|XN ), is simply the empirical density of the bootstrap realizations

Y ∗
N+2,b = µ(X∗

N+1,b, θ̂) + σ(X∗
N+1,b, β̂)ǫ̂∗t+1,b,
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for b = 1, . . . , B.

Most approximate parametric methods in general, and the above parametric bootstrap in par-

ticular, have at least two main shortcomings. First, the parametric specifications for µ(·) and

σ(·) may be inappropriate for the time series data of interest. Second, even when the specifi-

cations for the mean and variance may be appropriate as in (1), it might still be the case that

the conditional distribution of the error processes ǫt+τ , is not independent of the conditioning

information Xt. In other words, there is no a priori reason to assume, in general, that the only

features of the conditional distribution which depend on Xt are the mean and variance. Indeed,

it seems quite reasonable that other features of the distribution (such as skewness and kurtosis)

of ǫt+τ might depend on Xt. In general, under the model set-up of (1), the accuracy of forecast

densities is critically dependent upon knowledge of the correct conditional distribution for ǫt+1

that allows the whole conditional density of ǫt+τ to depend on Xt.

2.2 Markov forecast density (MFD)

One way to address the above-mentioned weaknesses of the parametric-bootstrap forecast den-

sity is through the use of nonparametric bootstrapping. In particular, we adapt the recently

popularized local bootstrap approach of Paparoditis and Politis (2001, 2002) to the context of

out-of-sample forecast density estimation. We assume that the time series Yt is the outcome of

a p-th order Markov process, i.e.

Pr(Yt+1 ≤ yt+1|Yt = yt, . . .) = Pr(Yt+1 ≤ yt+1|Yt = yt, . . . , Yt−p+1 = yt−p+1)

almost surely for yt+1, yt, yt−1, . . . and some finite integer p ≥ 1. The assumption of Markov

dependence is satisfied by a large class of linear and nonlinear models that are of interest in

time series analysis and forecasting. The conditionally heteroskedastic autoregressive model is

one special case of a Markov process.

Let Y1, · · · , YN denotes a realization from a Markovian time series process of order p. The goal is

to estimate the out-of-sample τ -step forecast density, i.e. the conditional density of YN+τ given

YN , YN−1, · · · , Y1 where τ ≥ 1. Because of the recursive nature of the proposed procedure, we

introduce a time-varying forecast base, T , which takes values in {N, N +1, . . . , N + τ −1}. Now

define,

XT = (YT , YT−1, . . . , YT−p+1)
′ and Xt = (Yt, Yt−1, . . . , Yt−p+1)

′

where t ∈ Sp,T and Sp,T = {p, p + 1, . . . , T − 1}. Further, let J be a discrete random variable

taking its values in the set Sp,T with the following probability mass function

P (J = t) = K1

(
XT − Xt

h1,N

)
/
∑

m∈Sp,T

K1

(
XT − Xm

h1,N

)
. (2)
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where h1,N > 0 is a bandwidth (or smoothing) parameter and K1(·) is a non-negative symmetric

density function (called kernel function).

We suggest to compute the τ -step MFD estimator, f̂N+τ (·|XN ) using the following iterative

algorithm.

Step 1 Begin with T = N . Compute P (·) via the formula in (2). Then, use P (·) to resample

with replacement from the successors of Xt, i.e., Y ∗
N+1 = YJ+1 (we attach asterics to indicate

resampled data). If τ ≥ 2, Go to Step (2.1). Otherwise, proceed to Step (3).

Step 2

Step 2.1 Move T by one period forward, i.e. T = N + 1. Accordingly, update the con-

ditioning vector XT to X∗
T = (Y ∗

T , YT−1, . . . , YT−p+1)
′. Once the update is done, compute

P (·) via the formula in (2) and resample with replacement from the successors of X∗
t , i.e.,

Y ∗
N+2 = YJ+1. If τ ≥ 3, Go to Step (2.2). Otherwise, proceed to Step (3).

Step 2.2 Keep moving T forward one step at a time and repeat Step 2.1 by updating XT .

This will be done until T = N − τ − 1.

Step 3 Repeat Step (1) (and (2) if τ ≥ 2) B times resulting in Y ∗,1
N+τ , Y

∗,2
N+τ , . . . , Y

∗,B
N+τ .

Step 4 Using another bandwidth h2,N > 0 and kernel function K2(·), compute the kernel density

from the B-bootstrap observations in Step (3). This will provide the required τ -step forecast

density estimate, i.e f̂N+τ (·|XN ).

In essence the strategy above is to assign probability weights to each vector Xp, · · · ,XT−1, and

use those probabilities to resample from their successors. The values of these probabilities will

depend on the “closeness” of the vectors Xt to XT . Those states that are “close” to XT receive

larger probability weights (compared to those that are further away) and are thus more likely

to be sampled in the bootstrap procedure. Thus, by suitably choosing these probability values,

the Markov dependence in the data is maintained. On the other hand, the parametric-bootstrap

approach is residual-based in the sense that it begins by estimating θ and β and subsequently

uses independent resampling of the fitted residuals to generate bootstrap realizations. Thus, it

assumes that dependence is fully captured by the the conditional mean and conditional variance.

Instead, the MFD estimator does not attempt to reduce the problem to independent residuals,

but the resampling procedure is applied directly to the time series realizations. This resam-

pling procedure is done in such a way that the resulting forecast density is able to capture the

dependence structure of the time series, beyond the first two conditional moments.
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Note that when τ = 1, f̂N+1(·|XN ) as given in Step (4) of the above algorithm can also be

written as follows,

f̂N+1(y|XN ) =
1

h2,N

∑

J∈Sp,N

K2

(
y − YJ+1

h2,N

)
P (J)

=
1

h2,N

∑

J∈Sp,N

K2

(
y − YJ+1

h2,N

)
K1

(
XN − XJ

h1,N

)
/
∑

J∈Sp,N

K1

(
XN − XJ

h1,N

)
(3)

where y ∈ IR and the kernel K2(·) is a nonnegative symmetric density function. Lets create an

associated process (XJ , ZJ) where ZJ = YJ+1 for J ∈ Sp,N . Then, (in retrospect) f̂N+1(y|XN )

reduces to the well-known conditional density estimator of ZJ conditional on XJ = XN , see for

example, Hyndman et al. (1996), Fan et al. (1996) and de Gooijer and Zerom (2003), among

others. Under some regularity conditions about (XJ , ZJ) (that are also satisfied by our strictly

stationary markovian time series Yt), de Gooijer and Zerom (2003) has shown the asymptotic

consistency of another conditional density estimator where f̂N+1(y|XN ) is one special case. So,

this shows that our bootstrap procedure for estimating the forecast density is valid when τ = 1.

In the Appendix, we show asymptotic validity of MFD when τ ≥ 2.

2.2.1 Choice of bandwidth

To apply the MFD estimator, choices need to be made with regard to the form of the kernels,

K1(·) and K2(·), as well as the values for the smoothing parameters, bT and aT . Both theoretical

and empirical studies regarding kernel-based nonparametric smoothers have confirmed that the

choice of kernel functions does not have a relevant influence on the accuracy of the estimators.

This has been shown to be the case for density and regression-type estimators by Fan and Yao

(2003). In both the simulation and the empirical part of this paper, we use the standard normal

density for both K1 and K2. To the contrary, appropriate choice of the smoothing parameters

is crucial for the accuracy of all kernel-based methods.

Note that the MFD estimator does not require both h1,N and h2,N to be chosen simultaneously.

By construction, the estimator is implemented in two stages. Detailed simulation experiments

suggest (using the time series models in Section 3.1) that the MFD estimator is not sensitive to

the choice of h2,N as long as h2,N ∼ N−1/5. So, we use h2,N = σ̂N−1/5 where σ̂ is the standard

deviation of the time series {Y1, . . . , YN}. On the other hand, the choice of h1,N seems to be

critical to the quality of the forecast density estimator. This might suggest that accounting for

the correct dependence (dynamics) in time series is crucially important for the accuracy of the

forecast density.

For fixed N , when h1,N → 0, the τ -step forecast density will tend to accurately capture the

dependence structure or dynamical properties of the data. The problem is that the forecast
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density becomes excessively peaked compared to the true forecast density (see the Monte Carlo

simulation experiment Section for more on this situation). On the other hand, when h1,N → ∞,

the τ -step forecast density does not reflect the dependence structure of the data. The latter case

represents a situation where the data are in fact nearly independent. For a particular τ , notice

from Equation (2) that for h1,N → ∞, the probability weight P (J = t) → 1/(T − p) such that

the information contained in XN becomes irrelevant to forecast YN+τ . Therefore, h1,N should

lie between the above two extremes to obtain a forecast density estimate that better reflects the

shape of the true conditional density and accurately mimicks the dependent characteristics of

the data.

Observe that the probabilities P (·) used to resample the data are simply kernel estimates scaled

by kernel densities. Thus, we adopt a simple two-step procedure to select the bandwidth h1,N .

First, estimate a pilot density estimate for Xt,

π̂(Xt) =
1

T − p

∑

t∈Sp,T

1

h1,N
K1

(
XT − Xt

h1,N

)

using a preliminary bandwidth estimate h1,N = σ̂N
− 1

p+4 , where σ̂ is the standard deviation of

the time series {Y1, . . . , YN}. This bandwidth estimate is not adaptive to the data configuration

of Xt. In the second step, we use the pilot density estimate π̂(Xt) to adjust the preliminary

bandwidth (hereinafter called “fixed bandwidth”) in such a way that areas of high density use a

smaller bandwidth and areas of low density use a larger bandwidth. Following Silverman (1986),

we define a local bandwidth factor, λt, by λt =
{

π̂(Xt)
π̃

}−α
where π̃ is the geometric mean of

π̂(Xt) and α (0 ≤ α ≤ 1) denotes the sensitivity parameter that regulates the amount of weight

that is attributed to the observations in the low density regions. We consider α = 0.5. Using

λt, we define an adaptive bandwidth as h1,N (Xt) = λtσ̂N
− 1

p+4 . In Section (3), we compare the

performances in finite samples of both fixed and adaptive bandwidths.

3 Evaluating the forecast accuracy of the MFD estimator

In this section we examine the forecast performance of the MFD estimator f̂N+τ (y|XN ) in a

simulation experiment. The evaluation of the density forecasts is based on testing the probability

integral transform. We also introduce a simple useful extension of these tests to detect neglected

nonlinearity in the estimated forecast densities.

3.1 Simulation set-up

We consider 6 models of markov order 1 and 2 that belong to either of the following time series

processes: the linear AutoRegressive (AR) model, the AutoRegressive Conditional Heteroscedas-

tic (ARCH) model and the Self-Exciting Threshold AutoRegressive (SETAR) model.
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(i) First-Order Markov Processes (p = 1):

AR(1): Yt = 0.6Yt−1 + ǫt

ARCH(1): Yt = σtǫt and σt = 0.7 + 0.3Y 2
t−1

SETAR(1): Yt = [−1.25 − 0.7Yt−1 + σ1ǫt]I(Yt−1 ≤ r) + [0.3Yt−1 + σ2ǫt]I(Yt−1 > r)

where the error ǫt is N(0, 1) distributed and I(A) represents the indicator function that assumes

value 1 when the event A is true and 0 otherwise. For the SETAR(1) model, we follow Clements

et al. (2003) and consider two parameterizations: one in which the two regimes have the same

variance σ1 = σ2 = 1 (r = −0.2) and the other in which they are heteroskedastic, i.e. σ1 = 1

and σ2 = 2 (and the threshold parameter is set equal to r = −0.1).

(ii) Second-Order Markov Processes (p = 2):

SETAR(2): Yt = [−1.25 − 0.7Yt−2]I(Yt−2 ≤ r) + 0.3Yt−2I(Yt−2 > r) + σǫt

SETAR(1-2): Yt = [−1.25 − 0.7Yt−1]I(Yt−2 ≤ r) + 0.3Yt−2I(Yt−2 > r) + σǫt

For the SETAR(2) model, the dependence occurs only at the second lag whereas in the SETAR(1-

2) model, the dependence is both at the first and second lags. For both second-order models,

we set σ = 1 and r = −0.20.

We adopt a rolling approach to generate density forecasts. Let M be the total number of

observations and n be the first forecast origin. This means that there are n observations up to

and including the nth observation. By “rolling” we mean that the forecast base N extends as

far as M − τ∗ where τ∗ is the maximum forecast horizon. Hence, N = n, n + 1, . . . , M − τ∗. In

the simulation exercise, we consider τ = 1, 2, 3 (thus, τ∗ = 3) and n = 300 (M = 600), n = 600

(M = 900) and n = 900 (M = 1200). The number of bootstrap replications B is always fixed

at 1000 and the number of simulations to 2000.

3.2 Probability integral transform based tests

When the object of interest is the prediction of the conditional mean, a straightforward evalua-

tion criteria consists of comparing the predicted and realized values according to a chosen loss

function (e.g., quadratic). However, the evaluation of density forecasts is complicated by the

fact that we do not observe the realization of the forecast density. To overcome this problem,

evaluation methods based on the Probability Integral Transform (PIT) have been proposed in

the literature.

First, consider the case of testing the density forecasts for τ = 1. The approach of testing for

the case of τ ≥ 2 will be discussed later in this Section. Because PIT tests involve a sequence of
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density forecast estimates, the rolling approach is an ideal context. The PIT, here denoted by

zN , for N = n, n + 1, · · · , M − τ∗, is defined as

zN =

∫ Y
N+1

−∞
f̂N+1(u|XN )du (4)

where f̂N+1(·|XN ) is the one-step forecast density based at the forecast origin N . Let fN+1(u|XN )

denote the true forecast density. If the forecasting model is correctly specified, fN+1(u|XN ) and

f̂N+1(u|XN ) coincide and the sequence {zN} is i.i.d. U(0, 1). Thus, evaluating the goodness

of the estimated forecast densities is equivalent to evaluate the independence and uniformity

properties of {zN}. This result forms the foundation for the PIT-based family of tests. Diebold

et al. (1998) first introduced this idea of evaluating density forecasts by testing whether the

empirical CDF of the {zN} is significantly different from the theoretical uniform CDF. They

employed mainly qualitative graphical tools to assess uniformity and independence. The more

recent literature has introduced formal tests to evaluate the uniformity of the PIT, such as the

Kolmogorov-Smirnov (KS) test.

However, testing the uniformity of the PIT evaluates only the distributional part of the hypoth-

esis on {zN} and does not capture violations of independence. Berkowitz (2001) proposes to

transform the PIT using the inverse of the standard normal distribution. Under the assumption

that the PIT is i.i.d. U(0,1) the transformed random variable is distributed as an i.i.d. standard

normal. He then uses Likelihood Ratio (LR) tests of the hypothesis of independence (versus

the alternative of autoregressive structure in the PIT) and of the joint hypothesis of i.i.d and

standard normality. Recently, Hong et al. (2004) and Hong and Li (2005) propose an omnibus

statistics that tests jointly the hypothesis of independence and uniformity and is also robust

to parameter estimation uncertainty. The relevance of assessing violations of the independence

assumption is clear from the results of Clements et al. (2003). They investigate the power of the

KS and LR tests to distinguish between a linear-based and nonlinear-based forecast densities

when the true data generating process is nonlinear. The linear density forecasts are misspecified

and this should be indicated by testing the PIT. However, Clements et al. (2003) showed in a

Monte Carlo exercise that these tests have negligible power to indicate the misspecification of

the linear forecast density. This motivates us to introduce an additional test of the PIT in order

to detect neglected nonlinearity in the conditional mean of density forecasts.

We test separately the assumptions of uniformity and independence of the PIT series. In par-

ticular, we consider specific directions in which independence might be violated, such as serial

correlation, heteroskedasticity of the ARCH-type, and neglected nonlinearity. Rejections of the

null hypothesis of these tests indicate misspecification of the density forecasts and suggest direc-

tions in which the conditional model could be improved. For uniformity, the KS test is used. To

test for the presence of serial correlation in the PIT, we assume that the zN follows the process

(zN − z̄) = α1(zN−1 − z̄) + · · · + αq(zN−q − z̄) + ǫN . (5)
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A test for linear independence is equivalent to testing the hypothesis that all the αi’s (for i =

1, · · · , q) are equal to zero. An LM-type test is carried out with a statistic equal to (M−τ∗−n+1)

times the R2 of Equation (5) that is distributed as a χ2(q). Rejection of the null hypothesis

suggests the presence of linear dependence unaccounted by the forecasting model. We denote

the test for serial correlation as SC1. To test whether the density forecasts correctly account

for the possibility of ARCH structure in the residuals, we perform an ARCH LM test, i.e. we

regress the squared residuals of Equation (5) on r lags

ǫ2N = β0 + β1ǫ
2
N−1 + · · · + βrǫ

2
N−r + ηN (6)

and test the null hypothesis that the βj (for j = 1, · · · , r) are jointly equal to zero. The test

statistic is (M − τ∗ − n + 1) times the R2 of Equation (6) and it is distributed as a χ2(r). We

denote this test as HET. As mentioned earlier, an interesting alternative to evaluate is the

ability of the forecast densities to account for possible nonlinearity in the underlying generating

process. We adopt the V23 test proposed by Terasvirta et al. (1993) to test the hypothesis

of neglected nonlinearity in the conditional mean of the zN . This is done by estimating the

following regression

(zN − z̄) = α1(zN−1 − z̄) + · · · + αq(zN−q − z̄) +
q∑

i=1

q∑

j=1

pδi,j(zN−i − z̄)(zN−j − z̄)+ (7)

+
q∑

i=1

q∑

j=1

q∑

k=1

δi,j,k(zN−i − z̄)(zN−j − z̄)(zN−k − z̄) + ǫN

Under the null hypothesis of linearity all the δi,j and δi,j,k are equal to 0. A standard F-test can

be used to test this hypothesis. We interpret the rejection of the null hypothesis as evidence

that the forecast density does not account for nonlinearity of the time series.

We described the testing approach for one-step ahead density forecasts. The above procedures

can be used for the evaluation of multi-step density forecasts, i.e. τ ≥ 2, provided the following

simple provisions for the autocorrelation in {zN} are being made. That is, for τ -step ahead

forecasts, each of the sub-series (z1, z1+τ , z1+2τ , · · ·), (z2, z2+τ , z2+2τ , · · ·) and (zτ , z2τ , z3τ , · · ·)

should be i.i.d. U(0, 1). The same battery of tests described above can be applied to the sub-

series of the PIT using a significance level equal to α
τ , where α is the size of the test and τ the

forecasting step. The null hypothesis is rejected if any of the τ tests is rejected.

3.3 Performance of the MFD estimator

We now evaluate the performance of the MFD for some simulated (linear and nonlinear) time

series processes. To benchmark the performance of the MFD, we also evaluate the forecast

1Siliverstovs and van Dijk (2003) consider a similar approach that consist of testing (zN − z̄) (and power

transformations) using the Ljung-Box test.
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accuracies of two alternative methods to generate density forecasts. The first method is to

simply resample the data under the assumption of independence. In this case we destroy the

dependence in the data and hence the forecasting densities are misspecified for all six simulated

models. Evaluating these density forecasts gives an indication of the power of the tests, that is,

their ability to signal the misspecification of the forecast density estimate (that are generated

under the null of independence while the true underlying process is dependent). The second

method that we use for comparison is a linear AR model (with bootstrap errors as discussed in

Section 2). The linear forecast densities are appropriate when we consider the AR(1) process but

are misspecified for the nonlinear time series models. In this case, it is interesting to evaluate

whether testing the PIT with the V23 test is a useful tool in detecting the misspecification

of the forecast densities. We indicate the results for the density forecasts under the null of

independence as IND and for the linear forecast densities as LIN.

The MFD is implemented both for the fixed and adaptive bandwidth rules as discussed in

Section (2.2.1). In particular, we use h1,N = cσ̂N
− 1

p+4 in the case of the fixed bandwidth and

h1,N (Xt) = cλtσ̂N
− 1

p+4 in the case of the adaptive bandwidth where c=(0.5, 0.75, 1, 1.25). The

aim for introducing c is to evaluate the effect of under- and over-smoothing on the performance

of the MFD.

Simulated model: AR(1) Table (1) reports the frequency of rejections (at 5% significance

level) of the KS, SC, HET, and V23 tests when the simulated series are generated from the AR(1)

model. We first consider the case of τ = 1. The results show that the test for serial correlation

(SC) has very high power in detecting the misspecification of the IND density forecasts. For all

simulated series the SC test rejects the null hypothesis of no serial correlation in the PIT. This

result is expected since resampling the data destroys the AR(1) structure of the series. However,

testing the uniformity of the PIT with the KS test rejects in only 27% of the simulations. This

provides evidence of the low power of this test in detecting the dynamic misspecification of the

density forecasts. When the density forecasts are generated by the linear AR model (to predict

an AR(1) series) the rejection frequencies are, as expected, very close to 5% and all tests are

correctly sized.

Table (1) here

Considering the case of n equal to 300, the results for the MFD offer the following insights. Small

bandwidth values (e.g., c = 0.5) are associated with rejection frequencies of the SC test close

to the nominal level. However, increasing the value toward c = 1.25 worsens the performance

and the rejections rise to 23% (for both fixed and adaptive rules). The results improve when we

consider larger sample sizes (n equal to 600 and 900), although with a similar pattern. This seems

to suggest that under-smoothing is required to correctly capture the dynamics of the process.
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On the other hand, the HET test indicates that for small values of c the test over-rejects, that

is, suggests evidence of misspecification in the conditional variance of the process. However, this

result is spurious because the true underlying DGP is an homoskedatic AR(1) model. Increasing

the bandwidth value, the rejections decrease and for c = 1.25 the HET test is close to the 5%

level. Increasing the sample size reduces significantly the evidence of spurious heteroskedasticity.

The KS and V23 tests are, for all bandwidth values, correctly sized. Therefore, these results show

that the method provides appropriate density forecasts for values of the bandwidth (c between

0.75 and 1) that balance the trade-off between small (correct dynamics) and large (spurious

heteroskedasticity) values. Comparing the rejection frequencies for the HET test it is evident

that the adaptive scheme is affected by the spurious heteroskedasticity effect to a less extent.

Increasing the forecasting step τ to two shows that the SC test has still high power while the

KS test reject in only 13% of the cases. However, the power decreases to 58% when three-step

ahead forecasts are considered.

Simulated model: ARCH(1) The ARCH(1) model is a markovian model where the depen-

dence occurs in the conditional second moment of the process. The results of the simulations

are reported in Table (2). The evaluation of the IND (and LIN) density forecasts shows that

the HET test rejects in 82% of the simulations, while the other tests have frequencies very close

to the nominal 5% level.

Table (2) here

The density forecasts generated by the MFD have correct size for the KS, SC, and V23 test.

However, there are significant over-rejections for the HET test, in particular for small values

of the bandwidth. For this model the adaptive rule performs better in terms of frequency of

rejections of the HET test. This can be explained as follows. Time series generated from the

ARCH model are characterized by few and short-lived clusters of large observations that make

difficult for the nonparametric estimator (using the fixed bandwidth) to smooth in the tails

of distribution (where the data are sparse). As it is clear from the Table, using the adaptive

bandwidth and increasing the sample size have beneficial effects on the performance of the MFD

estimator. For n = 900 and c = 0.75 the HET test rejects in 8.7% of the simulations, slightly

over-rejecting compared to the 5% nominal level. Increasing the forecasting step τ to 2 and 3

shows that all the density forecasts provide similar results, in the sense that they have rejection

frequencies close to 5%.

Simulated model: homoskedastic SETAR(1) Table (3) reports the results for the ho-

moskedastic SETAR model with dependence in the first lag. For this parametrization, the

model shows both linear and nonlinear dependence. This is clearly captured by the SC and

V23 tests when evaluating the IND density forecasts. Both tests reject in more than 96% of the
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simulations, clearly indicating the misspecification of these forecasts to account for linear and

nonlinear dependence in the conditional mean. The evaluation of the linear density forecasts

(LIN) indicates slight over-rejection for the SC test (13%) and 94% of rejections for the V23

test. However, the KS test is rejecting for only 6.5% of the simulations. These results confirm

the findings of Clements et al. (2003) on the inability of the KS test to signal the dynamic

misspecification of the conditional densities. A possible solution to the difficulty of distinguish-

ing linear and nonlinear density forecast when the true DGP is nonlinear is addressed here by

introducing the V23 test. As expected, the test provides high power in detecting the neglected

nonlinearity (in the conditional mean) of the forecast densities.

Table (3) here

For τ = 1, the performance of the MFD follows a similar pattern to the case of the AR(1)

series. Under-smoothing achieves correct size for the V23 test (and already for sample size 300)

while over-smoothing increases the frequency of rejections to over 10%. However, also in this

case the spurious heteroskedasticity effect is present and disappears only when larger bandwidth

values are used. A balance between the two effects is obtained when the constant c is between

c =0.75 and 1, in particular for larger sample sizes. For all cases considered, the KS and SC

tests are quite close to the nominal level of the test. For τ > 1, the frequency of rejections

of SC and V23 tests decrease (compared to τ = 1) when used to evaluate the IND and LIN

density forecasts. This is not due to a significant loss of power of the test2 rather to the fact

that the nonlinear dependence becomes weaker and (almost) indistinguishable from independent

observations. Thus, it is not surprising that the MFD has rejections very close to the nominal

level in many cases, with the exception of the HET test where under-smoothing contributes to

reject too often.

Simulated model: heteroskedastic SETAR(1) In Table (4) we report the results of the

density forecasts for the SETAR(1) specification with error variances different in the regimes.

Neglecting the dependence in the data and simply forecasting the unconditional distribution

of the observations (IND) leads to significant rejections of the SC and V23 tests (56 and 99%,

respectively). The KS and HET tests have rejection frequencies between 11 and 16%. Similarly,

the misspecification of linear density forecasts is indicated by the V23 test (99% of rejections).

Table (4) here

Considering the one-step ahead density forecasts, the MFD method correctly accounts for the

dynamics of the SETAR specification (both SC and V23 are close to the nominal rejection

level), but it is affected by the spurious evidence of heteroskedasticity (HET rejects in 21% of

2At least in the case of τ = 2, the tests are calculated on the PIT’s with sample size 150 that is large enough

to guarantee reasonably high power.
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the simulations for c = 0.5) that disappears only at large values of the bandwidth (for c = 1.25

the rejection frequency is 6%). The performance of the MFD improves significantly when larger

samples are considered and for values of the constant c between 0.75 and 1 in the bandwidth

formula. When τ = 2 is considered the IND (and LIN) show significant rejections for the SC

and HET tests, but the evidence of nonlinearity is less pronounced. The V23 test rejects in

about 8% of the simulations.

Simulated model: SETAR(2) In this specification the dependence (linear and nonlinear)

occurs in the second lag. Hence, we set p = 2 for both the AR forecasting method and MFD.

Table (5) shows the results for this model. For τ = 1, the IND density forecasts show high

frequency of rejections for the SC and V23 tests (97 and 85%, respectively) while the LIN density

forecasts appear (in 79% of the simulations) to reject often, as expected, the null of linearity.

Contrary to the SETAR(1) case, when τ = 2 the V23 test shows high levels of rejections for

the IND and LIN density forecasts indicating their misspecification in accounting for nonlinear

dependence. However, this evidence disappears when τ = 3 is considered. The two-step ahead

IND forecasts show also significant deviations in the SC test, while LIN correctly accounts for

the linear dependence.

Table (5) here

Simulated model: SETAR(1-2) This specification has linear dependence in the first and

second lag and the switching between the two regimes is determined by the second lag. We set

p equal to 2 for both the LIN density forecasts and MFD. The evaluation of the IND density

forecasts (see Table (6)) indicates they are misspecified according to the SC, HET and V23 (100,

22 and 98%, respectively) at τ = 1, while for τ = 2 the SC has still high power but V23 rejects

in only 12% of the simulations. This is probably due to the weak form of nonlinearity that is

built-in the model.

Table (6) here

The results for the MFD are similar to the SETAR(2) case. Mid-values of c achieve reasonable

results, in particular when the adaptive bandwidth is used. Increasing the sample size is also

useful to correct the over-rejections of the tests compared to the 5% significance level.

3.3.1 Summary of the simulation results

We investigate the finite sample performance of the MFD by simulating a range of linear and

nonlinear time series models. The main result that emerges from this analysis is that the method

works reasonably well across the simulated models, provided a suitable bandwidth is chosen. In

particular, under-smoothing leads to density forecasts that better account for the dynamics of
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the process. But, the forecast density estimates becomes narrower (in the center) compared to

the true forecast density. This is reflected in over-rejection of the null in the HET test. On the

other hand, over-smoothing has the opposite effect: the spurious heteroskedasticity disappears

as well as the ability of the method to correctly model the dynamics in the density forecasts. The

simulation results suggest that the trade-off between the above two extremes can be minimized

by choosing the constant c in the range of 0.75 and 1. As to sample size requirement of the

MFD, the rejection frequencies of the PIT tests, for some models, are slightly higher compared

to the 5% nominal value) when the sample size for estimation is equal to 300, but improves

significantly when larger samples are considered.

4 Real data example

In this section, we estimate and evaluate density forecasts for different models (parametric and

MFD) using a macroeconomic time series. In particular, we consider the seasonally adjusted

time series of monthly growth rate of US Industrial Production (IP). The data period starts in

January 1960 and ends in April 2004 (532 observations). We use observations until December

1985 as the in-sample period and forecast out-of-sample from January 1986 up to the end of the

sample (312 and 220 observations for in- and out-of-sample, respectively). We forecast one- to

three-step ahead (τ = 1, 2, 3) with the in-sample set expanding to include the new observation

available (a rolling framework as in the simulations). For the MFD we select the Markov order

based on the δ(pMFD) test proposed in Diks and Manzan (2002) for the first available in-sample

period and keep it fixed in the rest of the sample. The results strongly indicate that pMFD = 3 is

the best choice. As to the bandwidth, both adaptive and fixed bandwidth rules are implemented.

Inferring from the simulation evidence, a constant c=0.75 is used.

The MFD will be compared against the following three methods: 1) resample the data under the

null of independence and we denote it as IND, 2) assuming a linear AR specification (indicated

as LIN) and 3) a two-regime SETAR(pTAR, d) model defined as

Yt+1 = [Xtθ1 + σ1ǫt+1]I

{(
d−1∑

i=0

Yt−i

)
≤ r

}
+ [Xtθ2 + σ2ǫt+1]I

{(
d−1∑

i=0

Yt−i

)
> r

}
(8)

where Yt+1 denotes the growth rate of the series and Xt is a pTAR-dimensional vector of lagged

values of Yt+1. The switching in the model depends on the cumulative growth rate of the last

d months. The vectors θ1 and θ2 represent the parameters governing the dynamics in the two

regimes. We allow for heteroskedastic regimes and denote the variances of the innovations by

σ1 and σ2, respectively. We followed the approach of Siliverstovs and van Dijk (2003) and

select recursively the lags pAR, pTAR and d based on a search up to the 6th lag and using the

AIC criterion. The forecasting densities (for methods 2 and 3) are obtained by drawing with
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replacement from the standardized residuals as discussed in Section (2.1).

The forecast density evaluation is based on SC, HET , and V 23 tests where we use up to a

maximum order of 5 (see the simulation section). Table (7) shows the p-values of the evaluation

tests for the different methods used to forecast IP in the case of one up to three steps ahead.

The results show that, for τ = 1, the IND density forecasts are misspecified according to the KS,

SC and V23 test (using a 5% significance level). This is expected since a vast literature found

evidence of linear and nonlinear dependence in the IP growth rate. The evaluation of the PIT

deriving from the LIN density forecasts indicates signs of misspecification, in particular, they

are not able to account for the nonlinear dependence in the data. The V23 test rejects the null

hypothesis of linearity providing further evidence to the literature that models the IP growth

rate using regime switching models. The evaluation of the SETAR density forecasts shows that

they are correctly specified, although the p-value of the KS test rejects the null of uniformity.

The results also suggest that the addition of the V23 test seems to provide a relevant tool in

testing density forecasts. If we would have only considered KS, SC, and HET tests the LIN and

SETAR forecasts would both seem correctly specified. However, the V23 test indicates that the

LIN density forecasts neglect to account for the nonlinearity in the data. The MFD method

seems to provide appropriate density forecasts in all the dimensions we are evaluating: the tests

do not reject the respective null hypotheses for both the fixed and adaptive bandwidth rules.

The two-steps ahead density forecasts indicate that IND provides misspecified forecasts (KS and

SC reject the null), while for the LIN predictive densities we reject the null of uniformity of the

PIT (at the 1% level). The results in the Table also suggest that the PIT of the SETAR forecasts

reject the null for the KS, SC and HET tests at the 5% significance level. Instead, the V23 test for

neglected nonlinearity does not indicate signs of misspecification. The MFD perform reasonably

well and none of the tests rejects at the 5% significance level. When considering three-step

ahead, all forecasts seem to correctly account for the dynamical and distributional properties

of the conditional density. The only rejection (at 5% significance level) occurs for the KS when

testing the SETAR forecasts.

5 Conclusion

This paper proposes a simple bootstrap-based nonparametric approach to forecast the density

in a time series context. The main feature of the Markov Forecast Density (MFD) method

is that it does not require the researcher to make a priori assumptions about the moments

in which the dynamics occurs, and the specification of a parametric form for the conditional

moments. We investigate the finite sample performance of the method by simulating a range of

linear and nonlinear time series models. The main result that emerges from this analysis is that

the method works reasonably well across the simulated models, provided a suitable bandwidth
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is chosen. Furthermore, the application of the MFD to the US Industrial Production series

provides forecasts that show no sign of misspecification along the dimensions tested using the

PIT approach (distribution, linear dependence, heteroskedasticity, and neglected nonlinearity).

Concluding, further work is required to improve the applicability of the method. One interesting

extension of the method is to consider a semi-parametric approach, where some of the moments

are modelled parametrically while using a Markov bootstrap on the residuals. This would

probably allow more flexibility (compared to a purely parametric model) and provide better

performance in small samples (compared to the fully nonparametric case). We will explore this

extension in a future work.
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Appendix: Asymptotic validty of the MFD for τ ≥ 2

As outlined in the algorithm, when τ ≥ 2, the MFD estimator can also be defined by repeating

one-step ahead predictions τ times, treating the bootstrap value from the last round as the true

value. In this way, the τ -step MFD estimator can also be viewed as a one-step plug-in estimator.

Thus, the asymptotic consistency result for the 1-step MFD also holds for the τ -step iterative

MFD estimator. We only need to show that replacing actual values by bootstrap replicates is

valid. For example, for τ = 2, it suffices to show the validity of replacing YN+1 by the bootstrap

counterpart Y ∗
N+1.

Denote by F (y|x) the one-step transition distribution function of Yt, i.e.

F (y|x) = Pr(Yt+1 ≤ y|Xt = x).

Let C denotes a fixed compact subset of IRp on which the marginal density of x is lower bounded

by some positive constant. Under a set of regularity conditions, Paparoditis and Politis (2001,

2002) show that the one-step transition distribution function F ∗(y|x) that governs the law of the

Markov bootstrap process satisfies the following uniform convergence property (see Theorem 3

in Paparoditis and Politis (2002)): supy∈R sup
x∈C |F

∗(y|x)−F (y|x)| → 0 (a.s. - almost surely).

Now, to adapt this result to the case of out-of-sample forecasting, we replace the conditioning

vector x by XT . Then, it is easy to see that

sup
y∈IR

|F ∗(y|XT ) − F (y|XT )|1(XT ∈ C) ≤ sup
y∈R

sup
x∈C

|F ∗(y|x) − F (y|x)|

where 1(A) denotes the indicator function for set A. Therefore,

sup
y∈IR

|F ∗(y|XT ) − F (y|XT )| → 0 a.s.

Because F ∗(y|XT ) is the law that generates Y ∗
T+1 and F (y|XT ) the law that generates YT+1, we

can replace YT+1 by Y ∗
T+1. For τ > 3, the same argument holds by induction.
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Table 1: AR(1) model (P=300)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.27 0.043 0.061 0.066 0.056 0.068 0.063 0.060 0.057 0.072

SC 1.000 0.056 0.079 0.089 0.15 0.230 0.082 0.090 0.160 0.240
HET 0.150 0.051 0.14 0.094 0.075 0.061 0.110 0.072 0.063 0.053
V23 0.065 0.049 0.056 0.055 0.053 0.055 0.054 0.052 0.051 0.053

600 KS 0.056 0.054 0.054 0.064 0.053 0.052 0.056 0.069
SC 0.070 0.075 0.110 0.160 0.074 0.079 0.110 0.170

HET 0.110 0.069 0.063 0.053 0.076 0.056 0.052 0.048
V23 0.055 0.067 0.059 0.047 0.058 0.062 0.064 0.053

900 KS 0.038 0.047 0.059 0.060 0.043 0.051 0.057 0.068
SC 0.060 0.070 0.087 0.140 0.060 0.077 0.095 0.160

HET 0.088 0.059 0.056 0.064 0.068 0.053 0.044 0.055
V23 0.041 0.053 0.053 0.053 0.039 0.059 0.052 0.053

τ = 2
300 KS 0.130 0.036 0.043 0.045 0.041 0.045 0.036 0.048 0.037 0.045

SC 0.990 0.043 0.053 0.053 0.071 0.077 0.053 0.056 0.070 0.080
HET 0.083 0.053 0.100 0.066 0.070 0.053 0.071 0.055 0.052 0.048
V23 0.055 0.051 0.059 0.053 0.052 0.052 0.056 0.050 0.047 0.053

600 KS 0.045 0.035 0.038 0.047 0.040 0.036 0.040 0.045
SC 0.060 0.051 0.055 0.067 0.057 0.053 0.059 0.071

HET 0.080 0.065 0.049 0.047 0.067 0.056 0.041 0.047
V23 0.056 0.051 0.046 0.043 0.049 0.051 0.048 0.044

900 KS 0.036 0.036 0.045 0.048 0.036 0.035 0.042 0.046
SC 0.043 0.041 0.045 0.065 0.049 0.044 0.047 0.066

HET 0.070 0.060 0.059 0.055 0.058 0.051 0.050 0.052
V23 0.059 0.048 0.043 0.050 0.057 0.051 0.049 0.053

τ = 3
300 KS 0.087 0.033 0.043 0.038 0.037 0.035 0.042 0.037 0.040 0.038

SC 0.580 0.043 0.044 0.055 0.051 0.041 0.042 0.055 0.046 0.039
HET 0.051 0.047 0.072 0.052 0.045 0.044 0.058 0.049 0.049 0.047
V23 0.050 0.052 0.055 0.046 0.054 0.053 0.053 0.048 0.053 0.055

600 KS 0.042 0.044 0.035 0.039 0.039 0.037 0.037 0.037
SC 0.046 0.052 0.043 0.044 0.044 0.050 0.045 0.047

HET 0.070 0.056 0.045 0.040 0.060 0.049 0.047 0.040
V23 0.055 0.056 0.044 0.045 0.053 0.052 0.039 0.043

900 KS 0.032 0.035 0.039 0.040 0.031 0.034 0.037 0.043
SC 0.041 0.049 0.044 0.045 0.038 0.047 0.048 0.048

HET 0.056 0.050 0.044 0.048 0.049 0.042 0.043 0.044
V23 0.053 0.043 0.048 0.050 0.053 0.043 0.050 0.047

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 2: ARCH(1)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.043 0.044 0.059 0.059 0.051 0.049 0.057 0.055 0.055 0.051

SC 0.075 0.058 0.053 0.051 0.056 0.044 0.051 0.049 0.048 0.045
HET 0.820 0.820 0.260 0.190 0.170 0.180 0.190 0.160 0.150 0.170
V23 0.073 0.073 0.051 0.050 0.047 0.049 0.052 0.051 0.047 0.047

600 KS 0.048 0.051 0.047 0.042 0.042 0.050 0.049 0.042
SC 0.058 0.051 0.050 0.047 0.056 0.051 0.050 0.045

HET 0.180 0.140 0.120 0.130 0.140 0.110 0.110 0.120
V23 0.066 0.06 0.056 0.045 0.056 0.061 0.052 0.049

900 KS 0.051 0.050 0.040 0.047 0.046 0.045 0.043 0.051
SC 0.051 0.058 0.047 0.050 0.053 0.056 0.048 0.051

HET 0.150 0.120 0.110 0.120 0.120 0.087 0.091 0.110
V23 0.058 0.060 0.049 0.051 0.057 0.060 0.048 0.050

τ = 2
300 KS 0.038 0.035 0.050 0.041 0.043 0.043 0.047 0.042 0.043 0.041

SC 0.053 0.056 0.050 0.056 0.048 0.051 0.049 0.053 0.050 0.049
HET 0.075 0.083 0.130 0.096 0.073 0.061 0.100 0.074 0.054 0.056
V23 0.057 0.057 0.055 0.056 0.045 0.043 0.057 0.051 0.047 0.039

600 KS 0.041 0.037 0.047 0.037 0.039 0.035 0.045 0.036
SC 0.049 0.051 0.040 0.047 0.047 0.047 0.043 0.043

HET 0.110 0.081 0.056 0.062 0.073 0.066 0.045 0.048
V23 0.058 0.051 0.050 0.050 0.055 0.052 0.047 0.045

900 KS 0.045 0.041 0.036 0.041 0.044 0.036 0.030 0.044
SC 0.055 0.055 0.049 0.045 0.059 0.055 0.045 0.047

HET 0.099 0.073 0.060 0.060 0.075 0.064 0.052 0.051
V23 0.063 0.053 0.044 0.057 0.058 0.054 0.040 0.054

τ = 3
300 KS 0.036 0.038 0.047 0.042 0.044 0.045 0.043 0.043 0.045 0.043

SC 0.041 0.039 0.058 0.058 0.053 0.041 0.054 0.057 0.053 0.040
HET 0.043 0.045 0.086 0.070 0.056 0.050 0.073 0.066 0.047 0.046
V23 0.052 0.057 0.056 0.064 0.054 0.044 0.052 0.061 0.051 0.041

600 KS 0.038 0.040 0.038 0.035 0.036 0.042 0.037 0.037
SC 0.046 0.050 0.051 0.051 0.040 0.043 0.054 0.051

HET 0.070 0.061 0.057 0.049 0.053 0.053 0.052 0.047
V23 0.063 0.065 0.058 0.048 0.053 0.052 0.058 0.045

900 KS 0.044 0.043 0.042 0.044 0.042 0.042 0.040 0.045
SC 0.050 0.040 0.061 0.050 0.047 0.036 0.058 0.048

HET 0.070 0.059 0.053 0.047 0.061 0.052 0.050 0.048
V23 0.055 0.053 0.047 0.048 0.055 0.048 0.044 0.045

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 3: SETAR(1), homoskedastic regimes (P = 300)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.110 0.065 0.059 0.049 0.054 0.047 0.060 0.047 0.055 0.049

SC 0.980 0.130 0.060 0.058 0.049 0.045 0.060 0.055 0.050 0.053
HET 0.066 0.088 0.150 0.120 0.088 0.070 0.140 0.110 0.086 0.064
V23 0.960 0.940 0.061 0.059 0.085 0.110 0.061 0.059 0.097 0.120

600 KS 0.048 0.043 0.039 0.047 0.045 0.042 0.042 0.051
SC 0.045 0.045 0.051 0.040 0.045 0.049 0.055 0.046

HET 0.110 0.089 0.077 0.069 0.110 0.086 0.072 0.064
V23 0.056 0.070 0.067 0.081 0.053 0.073 0.077 0.092

900 KS 0.044 0.048 0.042 0.042 0.047 0.051 0.051 0.043
SC 0.048 0.048 0.049 0.047 0.048 0.049 0.053 0.051

HET 0.094 0.075 0.064 0.044 0.090 0.069 0.059 0.045
V23 0.056 0.056 0.064 0.081 0.056 0.060 0.070 0.100

τ = 2
300 KS 0.056 0.049 0.050 0.041 0.035 0.037 0.052 0.043 0.037 0.034

SC 0.085 0.036 0.058 0.043 0.041 0.047 0.059 0.040 0.036 0.043
HET 0.056 0.057 0.100 0.069 0.049 0.049 0.096 0.061 0.048 0.047
V23 0.120 0.110 0.056 0.049 0.051 0.048 0.054 0.045 0.050 0.050

600 KS 0.036 0.035 0.034 0.043 0.042 0.036 0.035 0.039
SC 0.048 0.045 0.043 0.050 0.046 0.044 0.045 0.050

HET 0.076 0.066 0.056 0.042 0.061 0.067 0.051 0.047
V23 0.055 0.051 0.052 0.050 0.051 0.051 0.053 0.051

900 KS 0.042 0.048 0.048 0.043 0.041 0.049 0.038 0.036
SC 0.047 0.049 0.064 0.041 0.047 0.045 0.061 0.040

HET 0.075 0.059 0.045 0.047 0.069 0.054 0.049 0.047
V23 0.056 0.047 0.054 0.054 0.058 0.050 0.057 0.055

τ = 3
300 KS 0.042 0.035 0.047 0.042 0.041 0.040 0.051 0.043 0.042 0.042

SC 0.043 0.049 0.055 0.049 0.047 0.048 0.057 0.050 0.045 0.050
HET 0.048 0.044 0.083 0.050 0.051 0.051 0.079 0.048 0.047 0.053
V23 0.055 0.057 0.060 0.057 0.053 0.046 0.054 0.056 0.055 0.048

600 KS 0.034 0.034 0.043 0.041 0.036 0.035 0.043 0.043
SC 0.050 0.036 0.050 0.044 0.048 0.037 0.050 0.043

HET 0.063 0.055 0.046 0.048 0.061 0.052 0.051 0.047
V23 0.062 0.063 0.047 0.043 0.061 0.061 0.043 0.043

900 KS 0.044 0.044 0.039 0.037 0.039 0.047 0.037 0.034
SC 0.051 0.043 0.048 0.047 0.048 0.045 0.046 0.046

HET 0.061 0.049 0.042 0.044 0.053 0.052 0.041 0.045
V23 0.053 0.055 0.052 0.051 0.055 0.050 0.055 0.051

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 4: SETAR(1), heteroskedastic regimes (P = 300)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.110 0.077 0.052 0.045 0.066 0.064 0.053 0.050 0.060 0.061

SC 0.560 0.100 0.057 0.058 0.063 0.070 0.056 0.055 0.056 0.062
HET 0.160 0.190 0.210 0.160 0.110 0.060 0.180 0.130 0.087 0.057
V23 0.990 0.990 0.073 0.088 0.120 0.190 0.073 0.097 0.140 0.220

600 KS 0.051 0.036 0.048 0.060 0.050 0.043 0.049 0.060
SC 0.052 0.067 0.067 0.065 0.051 0.067 0.060 0.057

HET 0.130 0.090 0.077 0.075 0.110 0.083 0.069 0.067
V23 0.071 0.079 0.099 0.150 0.070 0.083 0.110 0.160

900 KS 0.044 0.043 0.045 0.048 0.048 0.041 0.041 0.055
SC 0.055 0.061 0.057 0.067 0.051 0.058 0.056 0.063

HET 0.120 0.082 0.070 0.058 0.097 0.072 0.061 0.058
V23 0.059 0.069 0.079 0.140 0.061 0.078 0.092 0.160

τ = 2
300 KS 0.072 0.087 0.051 0.048 0.051 0.047 0.053 0.051 0.051 0.047

SC 0.250 0.170 0.053 0.036 0.046 0.047 0.058 0.036 0.046 0.049
HET 0.180 0.190 0.140 0.110 0.082 0.069 0.120 0.098 0.067 0.059
V23 0.089 0.084 0.069 0.051 0.043 0.049 0.060 0.048 0.048 0.045

600 KS 0.047 0.043 0.039 0.049 0.048 0.042 0.042 0.053
SC 0.055 0.052 0.048 0.052 0.055 0.049 0.049 0.052

HET 0.110 0.083 0.069 0.068 0.099 0.075 0.057 0.060
V23 0.049 0.055 0.059 0.056 0.045 0.054 0.059 0.056

900 KS 0.040 0.046 0.039 0.040 0.038 0.042 0.042 0.036
SC 0.050 0.052 0.061 0.053 0.052 0.049 0.064 0.051

HET 0.092 0.076 0.058 0.056 0.081 0.072 0.056 0.056
V23 0.056 0.054 0.053 0.060 0.051 0.051 0.047 0.060

τ = 3
300 KS 0.048 0.060 0.043 0.045 0.051 0.032 0.048 0.046 0.051 0.032

SC 0.052 0.054 0.052 0.045 0.057 0.056 0.056 0.049 0.059 0.059
HET 0.043 0.043 0.110 0.064 0.063 0.053 0.097 0.052 0.053 0.050
V23 0.064 0.063 0.061 0.051 0.051 0.050 0.066 0.051 0.054 0.043

600 KS 0.048 0.033 0.042 0.043 0.047 0.033 0.039 0.042
SC 0.060 0.051 0.052 0.047 0.060 0.049 0.050 0.049

HET 0.069 0.059 0.053 0.047 0.064 0.056 0.051 0.047
V23 0.055 0.056 0.057 0.058 0.051 0.054 0.054 0.059

900 KS 0.036 0.052 0.037 0.033 0.040 0.048 0.037 0.041
SC 0.044 0.045 0.057 0.049 0.050 0.046 0.053 0.047

HET 0.066 0.053 0.050 0.047 0.066 0.051 0.050 0.046
V23 0.057 0.049 0.055 0.043 0.056 0.063 0.051 0.043

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 5: SETAR(2)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.120 0.065 0.550 0.086 0.060 0.066 0.460 0.081 0.061 0.062

SC 0.970 0.090 0.059 0.058 0.052 0.059 0.058 0.059 0.051 0.054
HET 0.070 0.071 0.590 0.310 0.160 0.089 0.350 0.170 0.100 0.074
V23 0.850 0.790 0.077 0.071 0.086 0.110 0.069 0.073 0.088 0.120

600 KS 0.290 0.064 0.052 0.070 0.230 0.057 0.053 0.070
SC 0.055 0.055 0.051 0.051 0.058 0.051 0.048 0.050

HET 0.520 0.250 0.120 0.081 0.280 0.130 0.086 0.070
V23 0.071 0.070 0.067 0.093 0.067 0.066 0.074 0.100

900 KS 0.170 0.059 0.043 0.054 0.140 0.053 0.044 0.050
SC 0.064 0.053 0.057 0.059 0.061 0.050 0.056 0.055

HET 0.440 0.200 0.110 0.060 0.230 0.100 0.069 0.047
V23 0.073 0.077 0.080 0.096 0.064 0.068 0.079 0.100

τ = 2
300 KS 0.120 0.059 0.260 0.072 0.051 0.058 0.220 0.073 0.052 0.061

SC 0.850 0.065 0.055 0.050 0.053 0.051 0.048 0.048 0.051 0.056
HET 0.071 0.077 0.170 0.096 0.055 0.062 0.150 0.083 0.051 0.060
V23 0.770 0.730 0.063 0.071 0.073 0.110 0.061 0.076 0.083 0.110

600 KS 0.130 0.043 0.041 0.051 0.120 0.049 0.043 0.051
SC 0.057 0.044 0.049 0.050 0.056 0.052 0.044 0.052

HET 0.130 0.086 0.059 0.058 0.130 0.075 0.059 0.058
V23 0.063 0.066 0.064 0.086 0.056 0.070 0.068 0.091

900 KS 0.092 0.050 0.044 0.042 0.082 0.044 0.046 0.043
SC 0.058 0.054 0.049 0.044 0.057 0.052 0.049 0.043

HET 0.130 0.083 0.060 0.055 0.100 0.080 0.056 0.055
V23 0.055 0.063 0.052 0.077 0.057 0.059 0.054 0.080

τ = 3
300 KS 0.044 0.044 0.190 0.063 0.040 0.044 0.180 0.057 0.033 0.048

SC 0.047 0.047 0.050 0.050 0.051 0.055 0.051 0.049 0.052 0.052
HET 0.044 0.043 0.110 0.072 0.056 0.035 0.100 0.063 0.053 0.037
V23 0.039 0.037 0.049 0.045 0.042 0.051 0.047 0.043 0.046 0.050

600 KS 0.110 0.050 0.041 0.036 0.098 0.052 0.043 0.040
SC 0.052 0.052 0.045 0.044 0.061 0.055 0.045 0.047

HET 0.090 0.063 0.051 0.048 0.088 0.062 0.051 0.047
V23 0.051 0.051 0.049 0.039 0.051 0.052 0.039 0.044

900 KS 0.095 0.047 0.040 0.043 0.081 0.047 0.042 0.039
SC 0.053 0.048 0.045 0.041 0.050 0.050 0.043 0.045

HET 0.096 0.070 0.044 0.042 0.083 0.062 0.043 0.040
V23 0.067 0.056 0.051 0.043 0.058 0.053 0.048 0.048

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 6: SETAR(1-2)

n Test IND LIN MFD (fixed) MFD (adaptive)
c = 0.5 c = 0.75 c = 1 c = 1.25 c = 0.5 c = 0.75 c = 1 c = 1.25

τ = 1
300 KS 0.040 0.060 0.330 0.065 0.036 0.051 0.280 0.063 0.042 0.056

SC 1.000 0.130 0.070 0.100 0.160 0.240 0.075 0.110 0.180 0.250
HET 0.220 0.280 0.510 0.220 0.110 0.076 0.290 0.130 0.071 0.061
V23 0.980 0.930 0.077 0.081 0.120 0.190 0.072 0.085 0.140 0.220

600 KS 0.150 0.053 0.043 0.042 0.130 0.051 0.041 0.049
SC 0.071 0.086 0.120 0.180 0.079 0.097 0.140 0.200

HET 0.410 0.150 0.097 0.070 0.230 0.090 0.081 0.051
V23 0.061 0.077 0.099 0.170 0.063 0.070 0.110 0.180

900 KS 0.120 0.055 0.048 0.048 0.096 0.049 0.050 0.051
SC 0.063 0.072 0.110 0.160 0.068 0.085 0.110 0.170

HET 0.340 0.140 0.076 0.062 0.180 0.084 0.076 0.055
V23 0.069 0.068 0.085 0.140 0.063 0.072 0.085 0.150

τ = 2
300 KS 0.280 0.044 0.170 0.070 0.077 0.065 0.170 0.069 0.072 0.071

SC 1.000 0.038 0.058 0.063 0.091 0.110 0.055 0.065 0.110 0.120
HET 0.080 0.045 0.140 0.089 0.055 0.056 0.110 0.064 0.048 0.048
V23 0.120 0.130 0.060 0.045 0.051 0.060 0.054 0.056 0.055 0.063

600 KS 0.100 0.051 0.047 0.068 0.091 0.055 0.055 0.071
SC 0.061 0.054 0.068 0.095 0.061 0.058 0.079 0.110

HET 0.120 0.079 0.060 0.051 0.083 0.061 0.048 0.050
V23 0.055 0.047 0.063 0.062 0.058 0.050 0.063 0.057

900 KS 0.075 0.054 0.051 0.054 0.071 0.057 0.054 0.057
SC 0.059 0.055 0.069 0.072 0.057 0.057 0.072 0.083

HET 0.110 0.073 0.057 0.044 0.089 0.063 0.055 0.040
V23 0.058 0.052 0.055 0.050 0.051 0.051 0.049 0.056

τ = 3
300 KS 0.130 0.120 0.130 0.041 0.039 0.030 0.120 0.041 0.039 0.032

SC 0.052 0.058 0.052 0.058 0.059 0.069 0.058 0.057 0.063 0.070
HET 0.092 0.065 0.092 0.052 0.050 0.039 0.065 0.056 0.048 0.043
V23 0.060 0.054 0.060 0.046 0.050 0.046 0.054 0.048 0.052 0.047

600 KS 0.080 0.041 0.039 0.032 0.076 0.036 0.035 0.029
SC 0.056 0.048 0.051 0.064 0.059 0.047 0.047 0.067

HET 0.074 0.060 0.050 0.046 0.059 0.056 0.045 0.051
V23 0.059 0.045 0.041 0.049 0.059 0.043 0.043 0.052

900 KS 0.057 0.045 0.041 0.030 0.057 0.043 0.040 0.026
SC 0.059 0.047 0.055 0.058 0.057 0.050 0.059 0.057

HET 0.071 0.051 0.055 0.053 0.072 0.048 0.051 0.051
V23 0.055 0.059 0.048 0.048 0.051 0.058 0.050 0.051

Percentage of rejections (at the 5% significance level) of the null hypothesis of the tests based on 2000

simulations. The forecasting methods are: IND resampling under independence, LIN linear AR model

with bootstrap residuals, and MFD the method described in Section (2.2). The number of bootstraps

is equal to 1000 for all methods. The lag in the MFD and the tests is equal to 1. The test are: KS =

Kolmogorov-Smirnov test for uniformity, SC = LM test of no serial correlation of order 1, HET = LM

(ARCH) test of no serial correlation of the squared residuals of order 1, V23 = test for linearity.
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Table 7: Comparison of Density Forecast Models

Forecasting Method KS SC HET V23

τ = 1

IND 0.006 0.000 0.353 0.041

LIN 0.129 0.067 0.493 0.026

SETAR 0.046 0.842 0.564 0.225

MFD (fixed) 0.918 0.119 0.825 0.149

MFD (adaptive) 0.676 0.192 0.824 0.279

τ = 2

IND 0.000 0.025 0.156 0.294

LIN 0.007 0.594 0.189 0.169

SETAR 0.014 0.038 0.022 0.158

MFD (fixed) 0.372 0.071 0.765 0.386

MFD (adaptive) 0.441 0.151 0.255 0.401

τ = 3

IND 0.068 0.059 0.858 0.278

LIN 0.155 0.110 0.904 0.316

SETAR 0.021 0.110 0.839 0.330

MFD (fixed) 0.336 0.154 0.282 0.239

MFD (adaptive) 0.512 0.193 0.640 0.236

Density forecasts for monthly US Industrial Production from January 1960 until April

2004. The out-of-sample forecast period starts in January 1986 (total of 220 forecasts).

The forecasting methods used are: IND bootstrap under independence, LIN linear

AR, SETAR indicates the SETAR specification in Equation (8), MFD using both the

fixed and adaptive bandwidth rule. Reported are the p-values of the tests described in

Section (3.2). For SC, HET and V23 we set the lag of the tests to 5. For the MFD

we set the order p to 3. The lag order for the AR and SETAR methods are chosen

performing a search up to 6 lags using the AIC criterion.
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