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Abstract

This paper investigates the evidence of time-variation and asymmetry in the per-

sistence of U.S. inflation. We compare the out-of-sample performance of different

forecasting models and find that quantile forecasts from an Auto-Regressive (AR)

model with level-dependent volatility are at least as accurate as the forecasts of the

Quantile Auto-Regressive model, in particular for the core inflation measures. Our

results indicate that the persistence of core inflation has been relatively constant and

high, but it declined for the headline inflation measures. We also find that the asym-

metric persistence of inflation shocks can be mostly attributed to the positive relation

between inflation level and its volatility.
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I. Introduction

There is a vast literature that investigates the, possibly changing, time series persistence of

inflation with unsettled conclusions. Fuhrer (2010) is a recent overview that discusses the em-

pirical and theoretical aspects of inflation persistence. On the empirical side, Fuhrer suggests

that the evidence seems to point to the conclusion that U.S. inflation persistence has declined

starting from the second half of the 1980s, in particular when considering the Consumer Price

Index (CPI) and the Personal Consumption Expenditure (PCE) price index, although there

is less convincing evidence when analyzing the GDP deflator and core measures of inflation.

A standard approach to evaluate the persistence of inflation are unit root tests that typically

conclude that inflation is non-stationarity when using samples up to 1984, but stationary when

only the post-1984 period is considered. The decline in inflation persistence after the mid-1980s

has been established also by Cogley and Sargent (2002) using a Bayesian VAR model with time-

varying parameters. They show that persistence was high during the 1970s and the first half of

the 1980s and low in the 1960s and since the mid-1980s, which also suggests the existence of a

relationship between the persistence and the level of inflation. On the other hand, Stock (2002)

and Pivetta and Reis (2007) argue that inflation persistence has been mostly high and constant

over time and conjecture that findings of its decline might be the spurious result of neglecting

to account for the fall in volatility that occurred after the mid-1980s. In addition, Tsong and

Lee (2011) and Tillmann and Wolters (2012) apply the Quantile Auto-Regressive (QAR) model

proposed by Koenker and Xiao (2004, 2006) to U.S. and international inflation rates at the

quarterly frequency. They interpret the evidence of asymmetric persistence as suggesting that

positive shocks (high conditional quantiles) to inflation have a permanent effect on inflation

while negative ones (low conditional quantiles) have a quick mean-reverting effect. They also

find that their results are, to a large extent, robust to considering breaks in the series which

might spuriously lead to the conclusion that persistence varies over time.

In this paper we aim at re-examining the evidence on U.S. inflation persistence, in particular

its variation over time and the notion that it might be asymmetric across the inflation distri-

bution. A possible explanation for the contradictory results in the literature is that inflation
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persistence and volatility seem to be positively related to the level of inflation so that misspeci-

fication in the dynamics of one component leads to the conclusion of time variation in the other

component. In order to distinguish between these alternative explanations we perform an out-

of-sample test of the predictive accuracy of a semi-parametric specification, the QAR model, to

that of an Auto-Regressive (AR) time series model with constant persistence and conditional

standard deviation of the errors depending on the level of inflation (see Evans, 1991 and Brunner

and Hess, 1996, among others). This approach can be interpreted as an out-of-sample specifica-

tion test in which the performance of a parametric model is compared to that of a non-parametric

one, with the performance being measured by their forecast accuracy. In particular, we compare

forecasts of quantiles, rather than the conditional mean, given our interest in evaluating the per-

sistence of inflation along its distribution, and in explaining its determinants. We thus interpret

findings of equal or higher accuracy of the parametric forecasts (relative to the QAR forecasts)

as supporting the heteroskedastic AR model for inflation dynamics. On the other hand, if the

parametric forecasts are less accurate compared to the QAR ones, we conclude that the former

is inadequate, either because of misspecification of the volatility equation or because persistence

might be time-varying and/or asymmetric. In addition, we also consider a QAR specification

in which we impose a unit root at all quantiles and we refer to this model as Quantile Unit

Root (QUR). Comparing the accuracy of the QUR quantile forecasts to those of the QAR and

heteroskedastic AR models provides an evaluation of the loss of (out-of-sample) predictability

that derives from assuming non-stationarity at specific parts of the inflation distribution.

We forecast core and headline CPI and PCE inflation at the monthly frequency from January

1985 until June 2011. The evidence from the out-of-sample comparison indicates that the

quantile forecasts of the heteroskedastic AR model are equally or more accurate relative to

those from the QAR which confirms its validity as a model for inflation dynamics. The rolling

estimates of inflation persistence in the heteroskedastic AR model are found to be fairly stable

around 0.9 in the out-of-sample period for core CPI and PCE, which agrees with the findings of

Stock (2002) and Pivetta and Reis (2007) that accounting for the volatility of inflation leads to

persistence estimates that are high and relatively constant. However, for the headline measures
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we find that inflation persistence experiences a decline to 0.2-0.3 in the mid-2000s which can be

attributed to the effect of excluding the high-inflation period of the 1970s from the estimation

sample. For these series, we find that the persistence of the series seems to have declined

in recent years in addition to the evidence of changing inflation volatility. Furthermore, the

estimate of the parameter of lagged inflation in the volatility equation is stable and significantly

positive which reinforces the view that inflation uncertainty increases with its level. If this is

case, the asymmetric pattern of the quantile persistence coefficients can be attributed to the

heteroskedasticity of inflation, as opposed to alternative explanations such as the asymmetric

effect of shocks (as in Tsong and Lee, 2011, and Tillmann and Wolters, 2012). Another result

is that forecasting the inflation quantiles using the QUR model that assumes a unit root at all

quantiles delivers less accurate forecasts relative to the QAR and heteroskedastic AR models,

in particular for quantiles below the median. This indicates that modeling the first differences

of inflation, instead of its level, leads to a significant loss of predictive power when the interest

is in forecasting the inflation distribution.

The paper is organized as follows. In Section II. we discuss the QAR model and in Sec-

tion III. we provide the in-sample estimation results and the non-stationarity tests in a quantile

framework. We then evaluate the out-of-sample performance of the quantile forecasts from the

QAR, QUR, and heteroskedastic AR model in Section IV. and provide a detailed discussion of

the results in Section VI.. Finally, Section VII. summarizes the findings of the paper.

II. A quantile model of inflation

We define the annualized inflation rate as πt = 1200 log(Pt/Pt−1), with Pt denoting the price

index in month t. Several approaches have been considered in order to measure the persistence

of inflation. For the purpose of this paper, we focus only on one of these measures which defines

persistence, denoted by ρ, as ρ ≡ ∑p
j=1 αj , with the αj ’s representing the coefficients of an

AR(p) model for inflation, i.e.

πt = µ +
p∑

j=1

αjπt−j + εt ≡ µ + ρπt−1 +
q∑

j=1

βj∆πt−j + εt (1)
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where εt is an i.i.d. random variable with mean zero and variance σ2, and the βj ’s are linear

combinations of the αj ’s and q = p − 1. Large values of ρ (with |ρ| < 1) correspond to high

persistence of the series in the sense that the cumulative effect of a shock to πt is given by

1/(1− ρ). In the limiting case that ρ = 1 the inflation process πt contains a unit root and hence

it is considered non-stationary. This measure of persistence focuses on the characteristics of the

inflation dynamics at the center of the distribution, and thus neglects the possibility that the

dynamics might be different in other parts of the distribution of πt. To investigate this issue,

Koenker and Xiao (2004, 2006) extend the constant (homogeneous) persistence model in (1)

into a Quantile Auto-Regressive - QAR(q) - model given by

Qπt(τ |Ft−1) = µ(τ) + ρ(τ)πt−1 +
q∑

j=1

βj(τ)∆πt−j . (2)

where τ ∈ (0, 1), Qπt(τ |Ft−1) represents the quantile of πt conditional on information available

at time t− 1, Ft−1, and the parameters µ(τ), ρ(τ) and βj(τ) are allowed to vary across different

quantiles τ . We refer to ρ(τ) as the quantile persistence (at level τ) of inflation since it generalizes

the persistence parameter in the conditional mean model in Equation 1. Koenker and Xiao apply

the QAR model to several economic variables and find an asymmetric pattern in the ρ̂(τ), with

large persistence estimates at high quantiles and significantly smaller at low quantiles. Similar

results are also found for U.S. and international inflation measures by Tsong and Lee (2011) and

Tillmann and Wolters (2012). These findings are interpreted as evidence that shocks to inflation

have an asymmetric effect at different parts of its distribution, so that positive (negative) shocks

contribute to increase (decrease) the persistence of inflation. Koenker and Xiao (2006) argue

that the QAR can be considered as a general (approximate) specification for parametric models

that allow for asymmetric persistence of shocks in economic variables (e.g., Beaudry and Koop,

1993).

The heterogeneity of the ρ(τ) coefficients could also be explained by a model in which the

volatility of shocks to inflation increases with the level of inflation. This hypothesis has received

considerable attention in the past by, among others, Evans (1991), Evans and Wachtel (1993),

and Brunner and Hess (1996). We can relax the hypothesis of homoskedasticity of the error

5



term in the AR specification in Equation 1 by assuming that it has a time-varying standard

deviation, denoted by σt, that is,

πt = µ + ρπt−1 +
q∑

j=1

βj∆πt−j + σtεt, εt ∼ N(0, 1) (3)

where |ρ| < 1 and the conditional standard deviation is given by σt = c0+c1πt−1+
∑r

k=1 ck+1∆πt−k.

This assumption implies that the volatility of inflation is a linear function of the past levels of

inflation and the existing evidence suggests that this relationship is likely to be positive, so that

we expect the coefficient c1 to be positive. The conditional quantiles of inflation implied by the

heteroskedastic AR model in Equation 3 are given by

Qπt(τ |Ft−1) = [µ + c0Φ−1(τ)] + [ρ + c1Φ−1(τ)]πt−1 +
k∑

j=1

[βj + cj+1Φ−1(τ)]∆πt−j

= µ(τ) + ρ(τ)πt−1 +
k∑

j=1

βj(τ)∆πt−j . (4)

where k = max(q, r) and Φ−1(τ) denotes the τ -th quantile of εt. This model, which we denote

by AR-HET, can thus be interpreted as a restricted version of the QAR specification with the

quantile coefficients of πt−1 given by ρ(τ) = ρ+c1Φ−1(τ). For positive values of the parameter c1

the model produces heterogeneous values for the persistence parameter across τ , similarly to the

asymmetric persistence explanation. While at the median the quantile persistence parameter

ρ(τ) equals ρ, it is larger than ρ for τ > 0.5 since Φ−1(τ) takes positive values (and c1 > 0).

On the other hand, for quantiles below the median Φ−1(τ) is negative such that the quantile

persistence is lower than ρ. Therefore, the AR-HET model implies conditional quantiles that

display heterogeneous values for ρ(τ), although this heterogeneity is entirely driven by the

relationship between inflation volatility and the level of inflation, rather than being the outcome

of the asymmetric effect of positive and negative shocks.

We thus have two possible explanations for inflation dynamics that are consistent with the

QAR specification and produce the type of heterogeneity in the persistence parameter that is

observed in the data. While the AR-HET model implies a constant persistence ρ and a positive
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value for c1, the hypothesis of asymmetric persistence of shocks can be interpreted, in terms

of the AR-HET specification, as time-variation of the coefficient ρ with the level of inflation

and c1 equal to zero. Combining the analysis of the QAR and AR-HET models allows us to

disentangle if the channel of asymmetric quantile persistence operates mostly through ρ or c1,

or quite possibly both. The controversy on the source of inflation persistence is a vivid one,

with some papers arguing for its decrease starting from the mid-1980s (see Levin and Piger,

2006, Benati, 2008, Cogley and Sargent, 2002, and Cogley et al., 2010 among others), while

other papers contending that persistence has remained constant and high (see Stock, 2002, and

Pivetta and Reis, 2007). In particular, the latter papers suggest that findings of a decrease in

persistence might be the spurious outcome of neglecting to account for the fall in volatility, so

that changes in volatility can be mistaken for changes in persistence.

It is important to be able to discriminate between these alternative explanations, in particular

when the interest is to provide a framework for the conduct of monetary policy. In the next

Section we review the in-sample results on the estimation of the QAR model on several headline

and core inflation measures at the monthly frequency and provide results about their stationarity

from a quantile perspective. We then try to distinguish between the asymmetric persistence and

level-dependent volatility hypotheses by performing an out-of-sample comparison of the accuracy

of quantile forecasts from the QAR model in Equation 2 and the heteroskedastic AR model in

Equation 3.

III. The in-sample evidence

We estimate the QAR model in Equation 2 using (seasonally adjusted) monthly price indexes

from January 1959 to June 2011 obtained from the Federal Reserve Bank of Saint Louis (FRED)

database for the following four measures of inflation: the Consumer Price Index for all items

(CPI), CPI excluding food and energy (CPILFE), Personal Consumption Expenditure deflator

(PCE) and PCE excluding food and energy (PCELFE).

We evaluate the hypothesis of non-stationarity of the inflation rate using the tests proposed

by Koenker and Xiao (2004), which assume that the quantile coefficients ρ(τ) measure the local
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persistence of inflation. The null hypothesis of unit-root behavior at any fixed τ for τ ∈ T , i.e.

H0 : ρ(τ) = 1, can be tested using the following two statistics:

tn(τ) =
fn(F−1

n (τ))√
τ(1 − τ)

(Y T
−1PXY−1)1/2(ρ̂(τ) − 1) and Un(τ) = n(ρ̂(τ) − 1) (5)

where Y−1 is the vector of lagged dependent variables (πt−1), PX is the projection matrix onto

the space orthogonal to X = (1,∆πt−1, · · · ,∆πt−q). A consistent estimator of f(F−1(τ)) is

given by fn(F−1
n (τ)) = 2hn/

[
x̄T (θ̂(τ + hn) − θ̂(τ − hn))

]
, where x̄ is a vector of averages of

xt = (1, πt−1,∆πt−1, · · · ,∆πt−q)T , the parameter vector θ̂(τ) = (µ̂(τ), ρ̂(τ), β̂1(τ), · · · , β̂q(τ)) of

the QAR(q) model is obtained from the usual quantile regression and hn is a bandwidth which

is set equal to hn = n−1/5[4.5φ4
(
Φ−1(τ)

)
/(2(Φ−1(τ))2 +1)2]1/5, where Φ(·) represents the CDF

of the standard normal distribution and φ(·) indicates the standard normal density function.

Koenker and Xiao (2004) also propose two tests that aim at evaluating the overall non-

stationarity of the series over a range of quantiles τ ∈ T , rather than at a specific quantile level.

The tests for the null hypothesis that α(τ) = 1 ∀ τ ∈ T are Kolmogorov-Smirnov (KS) type

statistics and are given by QKSt = supτ∈T |tn(τ)| and QKSα = supτ∈T |Un(τ)|, where tn(τ) and

Un(τ) are given above. Rejections of the null hypothesis of unit-root for πt means that πt is

not a constant (homogeneous) unit root process. This can happen even when the conventional

Augmented Dickey-Fuller (ADF) test fails to reject unit root. When the KS tests reject the null

hypothesis (implying non-constant unit root for πt), the estimated ρ(τ) values together with

their respective individual tests (tn(τ) and Un(τ)) can be informative in uncovering possible

asymmetry in the persistence behavior of inflation. To derive critical values for the above tests,

we implement the bootstrap approach of Koenker and Xiao (2004) which consists of generating

π∗
t under the null hypothesis of a unit root to ensure the non-stationarity of the bootstrap

sample.

Estimates of the persistence term ρ̂(τ) for several τ ∈ [0.1, 0.9] and the tests in (5) are

provided at the top of Table 1. The results indicate that, for all inflation measures and using

both QKSt and QKSα, the null hypothesis that ρ(τ) = 1 ∀ τ ∈ [0.1, 0.9] is rejected at the

1% level. This suggests that inflation does not exhibit a constant (or homogeneous) unit root
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behavior along its distribution, and the same conclusion can also be reached by examining the

individual ρ̂(τ) values at various quantiles τ . The estimates of ρ(τ) follow an asymmetric pattern

with values increasing toward one with the quantile τ . For example, the coefficient estimate is as

small as 0.643 for τ = 0.1 (CPI) and as large as 1.13 for τ = 0.9 (CPILFE). One interpretation

of these results is that inflation is stationary at low quantiles since both tn(τ) and Un(τ) tests

reject the null of unit root at those τ values in favor of the alternative ρ(τ) < 1. On the other

hand, the coefficient estimates at higher quantiles (above the median) are close to, or even

above, unity thus implying that inflation displays unit root or even explosive behavior at higher

quantiles. At those quantiles far above the median, tn(τ) and Un(τ) either fail to reject the

unit-root hypothesis ρ(τ) = 1 or if they reject the unit-root hypothesis, it is in favor of the

alternative ρ(τ) > 1 - suggesting explosive behavior.

The Table also reports the OLS or mean-based estimate of persistence ρ̂ corresponding to

the AR model in (1). Except for PCELFE, the null hypothesis of unit root is rejected in favor

of ρ < 1, at 5% level for CPI and PCE and at 10% level for CPILFE using asymptotic critical

values for the ADFt statistics. A qualitatively similar conclusion is also suggested when using

a confidence interval approach using the grid bootstrap of Hansen (1999). Hence, the mean-

based persistence approach largely suggests global stationarity of inflation (with the exception

of PCELFE). This conclusion implicitly means that inflation is overall stationary across its

distribution.

Another interesting hypothesis to evaluate is whether the conditional distributions of the

inflation measures have experienced structural breaks which might have occurred at the center

of the distribution and/or on the tails. Oka and Qu (2011) recently proposed tests for structural

parameter change for quantile regression models that allow to evaluate the hypothesis of param-

eter constancy at the individual quantile level or of the whole conditional distribution. These

tests are thus more informative relative to break tests that focus on the conditional mean since

they also provide information about possible breaks in the tails of the conditional distribution

and their possible asymmetry. We implemented the SQτ (l + 1|l) test proposed by Oka and Qu

(2011) for l = 0, 1, and 2 and for τ = 0.1, 0.3, 0.5, 0.7 and 0.9 and Table 1 provides the break

9



dates for the four inflation measures using a 5% significance level. The results indicate only

one break at most quantiles which occurs at high quantiles for PCE in 1980 and for core CPI

in 1980 and 1984. For core PCE the break occurs in 1975-1976 at the two extreme quantiles,

while for CPI we find that the tails experienced a break at the beginning of the 2000s whilst the

center of the distribution in 1980. The quantile break test thus indicates that the conditional

distribution might have experienced significant changes which mostly happened at the outer

quantiles, in particular on the right tail of the distribution, and can be associated with changes

in the volatility of inflation, rather than its mean. The only inflation measures for which we find

evidence of a break at the center of the distribution is CPI in April 1980.

Finally, we also estimate the AR-HET model in Equation 3 by ML under the assumption

of normality of the errors on the full sample from 1959 to 2011. We select the lag orders in

the mean and standard deviation equations by BIC criteria. Table 1 provides the coefficient

estimates for πt in the mean equation (ρ̂) and in the volatility equation (ĉ1). The estimation

results indicate that persistence is high for all inflation measures with values ranging from 0.89

to 0.956, as well as the parameter of πt in the volatility equation which are significant at the 5%

level, except for CPI inflation. The fact that the coefficient estimates of c1 are positive supports

the hypothesis of a positive dependence between inflation volatility and its level.

IV. The out-of-sample evidence

The results of the previous Section provide evidence of the asymmetric pattern of the ρ(τ)

estimates for both headline and core U.S. inflation measures at the monthly frequency. This

pattern can arise when shocks to inflation have an asymmetric effect above and below the median

but also when inflation volatility increases with its level. In addition, the presence of structural

breaks might partly explain the findings of asymmetric persistence and level-dependence of

inflation volatility. In order to distinguish between these different explanations, we evaluate and

compare the (out-of-sample) quantile forecasts of the semi-parametric QAR model relative to

those produced by the heteroskedastic AR model. We thus take the practical perspective of a

forecaster who uses predictive models consistent with each hypothesis with the aim of forecasting
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the quantiles of the inflation distribution. The forecaster has also to decide on the sample period

to use in estimation. We consider the cases of a long and short rolling window that allow to

evaluate the potential effect of breaks on the forecasting accuracy since the short window is able

to adjust more rapidly to changes of the inflation dynamics relative to the long window. In

addition, we also consider a third specification which we refer to as Quantile Unit Root (QUR)

model since we impose on the QAR specification the hypothesis that ρ(τ) = 1 at all quantiles.

The reason for including this model in the analysis is that it allows the evaluation of the loss of

forecasting accuracy (compared to the QAR model) that derives from the assumption of a unit

root at all quantile levels.

Models

In out-of-sample forecasting the horizons of interest are typically longer compared to the one-

month horizon which was considered in the in-sample analysis of the previous Section. We thus

consider two forecasting horizon, denoted by h, equal to 1 and 12 months ahead, respectively. For

the multi-period ahead forecasts the inflation rate is defined as πh
t+h = (1200/h) [ln(Pt+h) − ln(Pt)],

where Pt denotes a price index in month t. We begin the out-of-sample forecast exercise in Jan-

uary 1985 and end in June 2011 (318 monthly forecasts) and, as discussed above, estimate the

model parameters on a long and a short rolling window of 300 and 120 months, respectively.

The AR lags q and r are selected by the BIC criterion. To summarize, the models considered

to produce quantile forecasts for πh
t+h are:

• QAR: the Quantile Auto-Regressive (QAR) model is given by Qπh
t+h

(τ |Ft) = µ(τ) +

ρ(τ)πt +
∑q

j=1 βj(τ)∆πt+1−j . We estimate the model on rolling windows of size 120 and

300 months which we denote by Short Rolling Window (SRW) and Long Rolling Window

(LRW), respectively.

• QUR: the Quantile Unit Root (QUR) model is a restricted version of the QAR model

in which we assume that ρ(τ) = 1 ∀τ . We can then reformulate the QAR model in

terms of changes of inflation and estimate the following quantile model: Q∆πh
t+h

(τ |Ft) =

µ(τ)+
∑q

j=1 βj(τ)∆πt+1−j , where ∆πh
t+h = πt+h−πt. The quantile forecasts for the level of
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inflation are given by Qπh
t+h

(τ |Ft) = πt + Q∆πh
t+h

(τ |Ft). We estimate the model on a long

rolling window and denote it by QUR LRW. From the comparison of the quantile forecasts

for QUR LRW and QAR LRW we expect to reject the hypothesis of equal accuracy if the

assumption of a unit root is unwarranted (at a specific quantile level) thus leading to

inferior forecast accuracy. As discussed in the previous Section, we expect QUR and QAR

to provide similar performance at high quantiles since the ρ̂(τ) are close to one, but QAR

is likely to outperform QUR at low quantiles given that the estimates of the quantile

persistence is significantly lower than one.

• AR-HET: the Heteroskedastic AR model is given by πh
t+h = µ+ρπt +

∑q
j=1 βj∆πt+1−j +

σt+hεt+h, where the volatility is given by σt+h = c0+c1πt+
∑r

k=1 ck+1∆πt+1−k. The model

is estimated by gaussian ML with σt+h constrained to be positive. The conditional quantile

of inflation is then constructed as Qπh
t+h

(τ |Ft) = µ̂ + ρ̂πt +
∑q

j=1 β̂j∆πt+1−j + σ̂t+hΦ̂−1(τ),

where Φ̂−1(τ) denotes the τ -th quantile of the EDF of the residuals ε̂t+h and σ̂t+h =

ĉ0 + ĉ1πt +
∑r

k=1 ĉk+1∆πt+1−k. Also in this case we estimate the model both on a Long

and Short Rolling Window and denote the model as AR-HET LRW and AR-HET SRW,

respectively.

In addition, we aim to compare the quantile forecasts and we discuss next the statistical approach

that we follow in this paper.

Evaluation

There are several methods proposed in the literature to evaluate density and distribution fore-

casts that mostly differ in the score (loss) function they assume to evaluate the relation between

the forecast and the (future) realization of the variable. Given the scope of this paper, a natural

choice of score function is the Quantile Score (QS) proposed by Gneiting and Raftery (2007)

which is specifically aimed at the evaluation of quantile forecasts. Denote by QSi
t+h(τ) the

Quantile Score statistic that evaluates the τ -level quantile forecast of model i (i =QUR LRW,
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QAR LRW, QAR SRW, and AR-HET) in month t and for horizon h, which is given by:

QSi
t+h(τ) =

[
πh

t+h − Qi
πh

t+h
(τ |Ft)

] [
I
(

πh
t+h ≤ Qi

πh
t+h

(τ |Ft)
)
− τ

]
(6)

where I(·) represents the indicator function, Qi
πh

t+h

(τ |Ft) is the τ -level h-period ahead quantile

forecast of model i based on information available at time t, and πh
t+h is the realization of h-

period inflation at time t + h. This score function represents the check (tick) function that

is employed for quantile regression estimation (see Koenker and Bassett, 1978). QSi
t+h(τ) is

interpreted as a loss and it can be used to compare the performance of two competing models.

Given the quantile forecasts for inflation at time t + h of model i and j, we conclude that model

j is more accurate than model i if QSi
t+h(τ) > QSj

t+h(τ), and vice-versa if i is more accurate

than j.

To evaluate the statistical significance of any difference in performance between two models,

as measured by the score function discussed above, we follow the approach of Giacomini and

White (2006) and Amisano and Giacomini (2007). A test statistic for the null hypothesis of

equal forecast accuracy at a given quantile τ , QSi
t+h(τ) = QSj

t+h(τ) (for t = 1, · · · , P , where P

is the total number of forecasts), is given by

t =
(
QS

j
h(τ) − QS

i
h(τ)

)
/σ

where QS
i
h(τ) and QS

j
h(τ) denote the sample average of the quantile scores of model i and

j, and σ represents the HAC standard error of the difference in scores. The test statistic

t is asymptotically standard normal and rejections for negative values indicate that model j

significantly outperforms model i (and vice-versa for positive values).

V. Results

The results of the QS test are reported in Table 2 for h = 1 and 3 for h = 12. The entries

represent the test statistic for the null hypothesis of equal accuracy of the quantile forecasts

produced by the null model (first column of the Table) relative to the alternative model (second
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column) which is standard normally distributed. We consider as benchmarks the QAR LRW

and the AR-HET LRW models and we include as competing models the QUR LRW, QAR

SRW, and AR-HET SRW. A negative value of the test statistic indicates that the forecasts of

the alternative model are more accurate compared to those produced by the benchmark, and

the opposite when the statistic is positive. The discussion is organized based on the pairwise

model comparisons that address the issue of the non-stationarity of inflation, the possibility of

a structural break, and the ability of the heteroskedastic AR model to explain the asymmetric

persistence pattern.

QAR LRW vs QUR LRW

The first question relates to the cost, in terms of forecasting accuracy, of assuming a unit root

at all quantiles of the QAR model. We investigate this issue by comparing the accuracy of the

QAR LRW forecasts to those produced by the QUR LRW model. The results in Table 2 for

h = 1 suggest that, for all inflation measures, the QS test statistics are large and positive for

quantiles below the median and mostly not significantly different from zero at high quantiles.

Hence, the evidence indicates that the QAR LRW benchmark forecasts provides more accurate

out-of-sample forecasts at low quantiles relative to the competing QUR LRW forecasts, a finding

which is consistent with the in-sample evidence. This suggests that assuming inflation is non-

stationary, and thus differencing the series, might lead to a loss of forecast accuracy relative to

the QAR model, although this mostly happens at low quantiles. These results hold also when

the forecast horizon is equal to 12 months as reported in Table 3.

QAR LRW vs QAR SRW

Several papers have argued that inflation has experienced a structural break in terms of a mean

shift (see Levin and Piger, 2006) or in terms of its persistence (see Cogley and Sargent, 2002)

with the break typically dated in the mid to end of the 1980s. If a break indeed occurred,

we would expect the QAR forecasts produced with a short rolling window to outperform the

long rolling ones since the short estimation window adapts faster to the parameter change. The

comparison of the performance of the QAR LRW and QAR SRW indicate that the shorter
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estimation window outperforms the long one for CPI (for h = 12) and core CPI (for both h = 1

and 12) for τ ≥ 0.8, but have similar accuracies in forecasting the central and lower quantiles.

This suggests that a short rolling window delivers higher predictive accuracy when the interest is

to forecast the CPI measures, in particular in the top part of the distribution which is consistent

with the in-sample quantile break test results. However, for PCE and core PCE inflation we

find that both estimation windows are, overall, equally accurate at both forecast horizons which

indicates that the in-sample breaks found at high quantiles did not affect negatively the forecast

performance.

QAR LRW vs AR-HET LRW and SRW

Comparing the QAR LRW and AR-HET quantile forecasts contributes to shed light on the

ability of the heteroskedastic AR model to explain the observed pattern of the persistence

coefficient ρ(τ). At h = 1 we find that the parametric model estimated on a short rolling

window outperforms the quantile model at high quantiles for core CPI, while AR-HET LRW does

significantly worse when forecasting CPI. For the PCE measures the two models provide equally

accurate forecasts. Instead, when considering the annual horizon we find that the parametric

model outperforms the quantile model forecasts at high quantiles, in particular when using a

long estimation window (except for CPI). This suggests that the heteroskedastic AR model

provides quantile forecasts that are equally and, in some part of the distribution, more accurate

relative to QAR and can thus be considered a valid explanation for the quantile persistence

pattern discussed in the previous Section.

AR-HET LRW vs QAR-SRW

The last comparison we are interested in evaluating is between the parametric model for inflation

and the QAR model estimated on a short rolling window. For both models we find evidence

that they outperformed the QAR LRW, at least for some of the inflation measures, and it is thus

interesting to compare the (relative) accuracy of their forecasts. The results in Table 2 show that

for h = 1 QAR SRW outperforms AR-HET at low quantiles for CPI and at high quantiles for

core CPI, but they are equally accurate for the PCE measures. Instead, the results in Table 3 for
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h = 12 indicate that the two quantile forecasting models perform equally, except at the center of

the conditional distribution for core PCE in which AR-HET outperforms QAR SRW. Overall,

this shows that the parametric model that assumes that inflation volatility depends on its level

provides quantile forecasts that are as accurate as the QAR forecasts obtained on a short rolling

window. Hence, at the one-year horizon it seems that even for the CPI measures for which we

found the short window outperforms the long window, this better performance is explained by

the parametric model thus indicating that the mechanism explaining inflation dynamics might

be the level-dependent volatility rather than the existence of breaks in its distribution.

AR-HET LRW vs AR-HET SRW

The short estimation window provides more accurate forecasts relative to the LRW at the

one-month horizon when forecasting Core CPI at high quantiles and at low quantiles for CPI.

However, for h = 12 the SRW is outperformed by the LRW for several inflation measures and

mostly at low quantiles.

VI. Discussion

The findings discussed in the previous Section indicate that assuming a positive relationship

between inflation uncertainty and the past level of inflation delivers out-of-sample forecasts

that perform similarly, for most measures, relative to the QAR model. This suggests that the

hypothesis of level-dependent inflation volatility should be considered as a potential explanation

for the heterogeneous persistence of inflation at different quantile levels, along with the possibility

that inflation shocks have an asymmetric effect on its dynamics. In this Section we discuss in

more detail some characteristics of the AR-HET and QAR models and evaluate whether there

is evidence of time variation in the relative forecast performance of the two models.

Figure 1 represents a time series plot of the estimates for the persistence coefficient, ρ,

and the coefficient of the inflation level in the volatility equation, c1, in the AR-HET model

for h = 1. The first observation in the graphs represents the parameter estimate produced

at the end of January 1984 (to forecast January 1985) and the subsequent values have been

16



estimated on a rolling window of 300 months (approximately 25 years). The plots for the core

inflation measures show that the rolling estimates of the persistence parameter ρ (continuous

line) oscillate closely around the full-sample estimates (dashed lines) and in both cases these

estimates are high and close to 1. However, for the headline measures the evidence suggests that

the persistence estimates are high and relatively constant up to the early 2000s and then tend

to decrease to stabilize around a level between 0.2 and 0.4. Since we are using a 25 years rolling

window, the estimates produced starting from the early 2000s are obtained on a rolling window

that progressively excludes the high-inflation period of the 1970s. This contributes to lower the

persistence of inflation for the headline measures, but remarkably does not have any effect on

the persistence estimate of the core measures. A possible explanation for this difference is the

role of the energy price shocks of the 1970s that affected more decisively the headline measures

rather than the core ones. The evidence of a break in persistence across inflation measures is

also consistent, at least partly, with results available in the literature which are based on various

inflation measures (e.g., the GDP deflator or the CPI Index) and different frequencies (typically

quarterly rather than monthly as in this study). In terms of the dependence of the past inflation

level in the volatility equation, we find that it oscillates around the full-sample estimate with

no clear tendency to decrease or increase during the sample. This suggests the dependence of

inflation uncertainty on its level is an assumption which seems robust over time.

In order to evaluate the ability of the heteroskedastic AR model to account for the hetero-

geneous pattern of ρ̂(τ), we estimate the following quantile regression model at each forecast

date:

Qπ̃h
t+h

(τ)(τ |Ft) = µ̃(τ) + ρ̃(τ)πt +
J∑

j=1

β̃j∆πt+1−j (7)

where π̃h
t+h(τ) = πh

t+h − ρ̂AR-HET(τ)πt and ρ̂AR-HET(τ) = ρ̂ + ĉ1Φ̂−1(τ) represents the quantile

persistence of inflation implied by the AR-HET model (see Equation 3) based on the estimates

of ρ and c1. Φ̂−1(τ) denotes the τ -level empirical quantiles of the residuals. The variable π̃h
t+h(τ)

can be interpreted as the h-month annualized inflation rate filtered by the persistence component

that can be attributed to the AR-HET model and measured by ρ̂AR-HET(τ)πt. We thus expect

the estimates of ρ̃(τ) in Equation 7 to be close to zero at all quantiles if the AR-HET model
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is the correct specification for the inflation dynamics. Alternatively, a positive value of ρ̃(τ)

indicates that the AR-HET model underestimates the QAR coefficient of πt at quantile τ , and

the opposite for negative values. Figure 2 provides the box-plots of the 318 estimates of ρ̃(τ) as a

function of τ for the four inflation measures and h = 1. The results show a similar pattern across

measures in which the estimates fluctuate close to zero in the central part of the distribution

(for τ between 0.3 and 0.7), but depart from zero at the tails with the deviations, in most cases,

smaller than 0.3 in magnitude. The mostly negative values of the coefficient at low quantiles

indicates that the parametric model predicts higher quantile persistence relative to the estimates

from the quantile regression model. On the other hand, we find mostly positive values at high

quantiles which indicate that AR-HET underestimates (local) inflation persistence. While these

deviations do not affect significantly the relative forecast accuracy at low quantiles, they seem

to have an impact on the forecast precision of AR-HET at the top quantiles.

Fluctuation Test

An additional test that can be conducted to evaluate and compare the forecasts is to assess

whether the relative performance of two models has changed over time, as opposed to the

evaluation discussed in Section 4 which is based on the full out-of-sample period (see Table 3).

This could be useful in the context of this paper since, as suggested by several papers, inflation

persistence might have declined after 1984 and thus could have changed the relative forecast

accuracy of the models. The evidence from the quantile break test in Table 1 seems to support

the occurrence of breaks, in particular at the top of the distribution. We thus implement a

so-called fluctuation version of the QS test as proposed by Giacomini and Rossi (2010) which

allows us to assess the evidence of changes in the relative performance of the QAR and AR-HET

forecasts at a given quantile. The fluctuation QS test that compares the forecasts of model i

and j at quantile level τ in month t and for window size m, denoted by fQSi,j
t,m(τ), is given by

fQSi,j
t,m(τ) =

(
1
m

t∑
s=t−m

QSi
s|s−h(τ) − QSj

s|s−h(τ)

)
/σt,m (8)
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where t = T + m, · · · , T + P and T indicates the first forecast month and P the total number

of forecasts. In practice, we use m = 120 which is equivalent to 10 years of monthly data and

the 5 and 10% two-sided critical values from the non-standard asymptotic distribution are 3.012

and 2.766, respectively, while the one sided are 2.770 and 2.482. We index the fluctuation test

fQSi,j
t,m(τ) with the last observation of the estimation window so that the first value of the

test refers to December 1994 and corresponds to the 120-month window from January 1985 to

December 1994. The standard deviation of the statistic, σt,m, is obtained as the Newey-West

standard errors for the difference in QS over the testing window.

Figure 3 shows the time series of the fluctuation QS test statistic for τ = 0.1 (left column) and

0.9 (right column) for the four inflation measures considered when the QAR LRW benchmark is

compared to QUR LRW, QAR SRW and AR-HET. The dotted lines represent the critical values

for the null hypothesis of equal accuracy of the quantile forecasts against the one-sided alternative

that QAR LRW outperforms the alternative forecasts (on the positive side) or the opposite (on

the negative side). Hence, values of the fluctuation test outside the critical value on the positive

side indicate that QAR LRW is more accurate in forecasting the quantile of interest, while for

rejections that occur on the negative side we conclude that the alternative models outperform

the benchmark (at a specific point in time). Considering first the performance of the QUR

LRW forecasts relative to QAR LRW for h = 12, the full out-of-sample results in Table 3

indicate that assuming a unit root at all quantiles produces forecasts that are significantly less

accurate at low quantiles, but equally performing at high quantiles, relative to the benchmark.

This result is confirmed by the fluctuation test that shows that the test statistic for τ = 0.1 is

mostly large and positive, which suggests that the benchmark forecasts are superior to those

of the QUR alternative and in the first part of the out-of-sample period for the two headline

inflation measures. When considering the short rolling window QAR forecasts, the fluctuation

test indicates the test statistics are mostly within the one-sided critical values for τ = 0.1, but

become significantly negative for τ = 0.9 (except for core PCE) which suggests their higher

accuracy relative to the long rolling QAR benchmark. This is also consistent with our earlier

discussion of the higher performance of the short rolling window relative to the long one. Finally,
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the comparison of the QAR LRW and AR-HET forecasts shows that for τ = 0.10 the forecast

performance of the two models is, to a large extent, comparable, but at high quantiles the

fluctuation test is significantly negative (except for headline CPI) in particular in the first half

of the out-of-sample period. We also report the fluctuation test when the benchmark model

is the AR-HET in Figure 4. One interesting comparison is between AR-HET and QAR SRW

since, as discussed above, both were able to outperform, for most measures, the QAR LRW at

the top quantiles. In the direct comparison of these two models we find that they have similar

performance over time at both low and high quantiles for most inflation measures, but the short-

rolling window seems to provide more accurate forecasts relative to the AR-HET forecasts for

τ = 0.9 for CPI and core CPI.

VII. Conclusion

Several studies have investigated the persistence of inflation with mixed conclusions about its

level and variability over time. In this paper we consider this issue in the context of a het-

eroskedastic Auto-Regressive model for inflation where the conditional standard deviation of

the error is a function of the past level and changes of inflation. The assumption that the

volatility of inflation depends on its level is an established relationship in the literature which,

if not properly accounted for, might lead to spurious evidence of time-variation in persistence.

Our results indicate that persistence for the core CPI and PCE inflation measures has been high

and fairly constant once the significant dependence of inflation volatility on its level is accounted

for. In addition, we also find that this model provides equally or more accurate out-of-sample

forecasts relative to a semi-parametric Quantile Auto-Regressive model, in particular at high

quantiles. The fluctuation analysis shows that the better performance of the heteroskedastic

AR model at high quantiles mostly occurs up to the early 2000s which can thus be character-

ized as a period of declining inflation volatility rather than persistence. We also compare the

out-of-sample forecasts of the parametric model with a quantile model estimated on a 10-year

rolling window which we consider short enough to capture parameter changes that might have

occurred in the inflation process. We find no significant difference in accuracy between the
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forecasts of the two models and thus conclude that the decline of inflation and its volatility

have been the main feature of the post-1984, rather than changes in persistence or breaks in

the mean. These results refer to the core inflation measures and are particularly relevant since

U.S. monetary policymakers seem to adopt the core measures, in particular PCE, as the main

inflation indicator.

On the other hand, for the headline inflation measures we find that the oil price shocks had a

permanent effect on the persistence of inflation which tends to decline once the 1970s are dropped

from the estimation window. For these inflation measures we find that persistence declined even

when we allow for a volatility component which depends on the inflation level. In terms of the

out-of-sample performance, we find that the heteroskedastic AR model performs equally well

relative to the short-rolling window quantile model at the annual horizon but it is outperformed

a the one-month horizon. Overall, the findings point to the fact that the different measures

show different persistence characteristics which, at least partly, can explain the differences in

the existing literature that in some cases consider the quarterly GDP deflator (e.g., Pivetta and

Reis, 2007) rather than the quarterly CPI index (e.g., Cogley and Sargent, 2002).
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Table 2

QS Test (h = 1)

Null Alternative QS(τ) Test

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CPI

QAR LRW QUR LRW 3.21 3.66 3.26 2.83 2.07 2.17 2.07 2.04 1.46 1.36 1.50
QAR SRW -1.03 -0.36 -0.32 0.48 0.66 1.24 1.16 1.13 0.82 0.74 0.78
AR-HET LRW 1.47 1.67 1.82 2.38 2.56 2.66 1.86 2.02 2.22 2.81 2.69
AR-HET SRW -0.15 -0.07 0.05 0.60 0.68 1.45 1.32 0.98 0.49 0.65 1.03

AR-HET LRW QUR LRW 0.53 0.86 0.95 0.55 0.10 0.28 0.67 0.54 -0.25 -0.59 -0.53
QAR SRW -2.45 -1.99 -1.72 -1.28 -1.19 -0.55 -0.09 -0.17 -0.72 -1.34 -1.39
AR-HET SRW -1.79 -1.61 -1.24 -0.99 -0.91 -0.26 0.15 -0.20 -0.78 -0.96 -0.58

Core CPI

QAR LWR QUR LRW 5.89 3.67 2.89 2.59 1.42 0.99 1.27 0.73 2.00 2.00 1.30
QAR SRW 0.37 -0.31 -0.39 -0.01 0.23 0.44 0.19 -0.75 -1.86 -2.38 -2.93
AR-HET LRW -0.61 -0.89 -1.81 -1.18 0.06 1.22 1.98 0.98 -0.74 -1.17 -1.10
AR-HET SRW -0.44 -0.38 -0.45 0.17 0.26 0.08 0.01 -1.15 -2.62 -2.68 -2.38

AR-HET LRW QUR LRW 5.50 3.79 3.79 3.08 0.97 -0.53 -1.22 -0.45 1.80 2.17 1.52
QAR SRW 0.73 0.11 0.42 0.54 0.23 -0.19 -1.02 -1.36 -1.62 -1.81 -2.06
AR-HET SRW -0.14 0.04 0.30 0.62 0.24 -0.56 -1.22 -1.86 -2.51 -2.28 -1.84

PCE

QAR LRW QUR LRW 3.70 3.13 2.76 2.44 2.37 2.28 1.92 1.35 1.38 1.53 1.66
QAR SRW 0.60 0.05 0.22 0.48 0.58 1.12 1.18 0.74 1.99 2.11 2.04
AR-HET LRW 0.86 -0.15 -0.80 -0.48 -0.57 -0.28 0.43 0.26 0.39 0.62 0.21
AR-HET SRW 0.12 -0.45 -0.63 -0.14 0.58 1.27 1.59 1.86 2.29 2.11 1.34

AR-HET LWR QUR LRW 1.72 2.02 2.39 1.98 2.09 1.78 1.13 0.86 0.89 0.92 1.24
QAR SRW -0.11 0.18 0.75 0.75 0.85 1.24 0.88 0.52 1.43 1.36 1.60
AR-HET SRW -0.57 -0.32 -0.17 0.09 0.81 1.38 1.38 1.62 1.83 1.56 1.11

Core PCE

QAR LRW QUR LRW 3.41 2.88 2.90 2.37 1.30 0.53 0.65 0.58 0.38 0.85 1.48
QAR SRW 1.14 0.75 1.17 1.36 0.96 0.77 0.88 0.44 0.12 -0.11 -0.48
AR-HET LRW -0.90 -0.48 -0.30 -0.89 -1.23 -1.56 -1.24 -0.53 1.10 1.76 1.17
AR-HET SRW 0.76 0.82 1.16 1.22 0.52 0.03 0.33 0.22 0.18 0.07 -0.03

AR-HET LRW QUR LRW 3.97 3.09 2.84 2.50 1.81 1.58 1.47 0.79 -0.81 -1.30 -0.34
QAR SRW 1.58 0.94 1.20 1.54 1.35 1.33 1.31 0.67 -0.33 -0.84 -1.03
AR-HET SRW 1.27 1.04 1.23 1.45 0.91 0.61 0.75 0.43 -0.28 -0.74 -0.67

The first column shows the benchmark model, the second column the alternative model, and columns 3 to
13 report the QS(τ ) test statistic which is standard normally distributed (for τ = 0.10, · · · , 0.9). Negative
values of the test statistic indicate that the alternative model outperforms the benchmark and the values
in bold denote significance at 5% against this one-sided hypothesis. Instead, positive values indicate
that the benchmark outperforms the alternative model and the statistics in italics denote significance
against this one-sided hypothesis. The forecasting horizon h is equal to 1 and the out-of-sample forecast
period starts in 1985.
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Table 3

QS Test (h = 12)

Null Alternative QS(τ) Test

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CPI

QAR LRW QUR LRW 4.15 4.34 4.41 3.44 2.31 1.41 1.01 0.82 0.57 0.60 0.54
QAR SRW -0.55 0.18 0.51 0.97 0.94 0.51 -0.12 -0.74 -1.50 -1.82 -2.03
AR-HET LRW 1.42 2.49 1.86 1.56 1.86 2.13 1.82 1.22 -0.02 -0.52 -0.50
AR-HET SRW 1.43 1.74 1.90 1.89 1.81 1.50 0.89 0.18 -0.66 -0.93 -1.13

AR-HET LRW QUR LRW 3.94 3.66 3.61 2.58 1.45 0.64 0.26 0.28 0.53 0.68 0.68
QAR SRW -0.99 -0.32 0.14 0.64 0.27 -0.43 -1.06 -1.15 -1.34 -1.50 -1.69
AR-HET SRW 1.31 1.46 1.67 1.70 1.39 0.89 0.17 -0.26 -0.60 -0.76 -0.97

Core CPI

QAR LRW QUR LRW 4.70 3.50 2.48 0.60 -0.44 -0.98 -1.36 -1.64 -0.56 0.40 0.65
QAR SRW 0.90 1.50 1.23 1.01 0.75 0.60 0.28 -0.43 -1.24 -1.79 -2.33
AR-HET LRW -0.09 -0.94 -1.28 -0.59 -0.56 -0.23 -0.20 -1.29 -2.22 -2.67 -2.66
AR-HET SRW 2.20 2.01 1.74 1.38 1.10 0.76 0.31 -0.42 -1.40 -2.08 -2.55

AR-HET LRW QUR LRW 4.50 3.62 2.90 0.95 -0.23 -1.15 -1.63 -1.18 1.72 3.33 3.46
QAR SRW 1.08 1.82 1.67 1.31 1.01 0.75 0.38 -0.04 -0.43 -0.63 -1.04
AR-HET SRW 2.03 2.02 1.89 1.59 1.32 0.90 0.40 -0.11 -0.71 -1.13 -1.61

PCE

QAR LRW QUR LRW 4.09 3.91 3.71 2.80 2.03 1.42 1.02 0.49 -0.27 -0.14 0.11
QAR SRW -0.76 -0.39 -0.19 0.14 0.32 0.28 0.26 0.06 -0.57 -0.76 -1.05
AR-HET LRW -0.36 -0.13 -0.09 -0.21 -0.06 0.00 0.01 -0.10 -2.76 -3.65 -4.80
AR-HET SRW -0.11 0.34 0.60 0.97 1.01 0.83 0.65 0.51 0.09 0.07 0.17

AR-HET LRW QUR LRW 3.83 3.38 2.87 2.08 1.37 0.91 0.61 0.37 0.63 1.23 2.22
QAR SRW -0.73 -0.40 -0.19 0.25 0.43 0.36 0.32 0.12 0.29 0.40 0.64
AR-HET SRW -0.04 0.40 0.66 1.08 1.08 0.88 0.68 0.56 0.62 0.70 0.84

Core PCE

QAR LRW QUR LRW 6.11 4.45 2.87 1.29 0.31 -0.24 -0.60 -0.86 -1.13 -1.08 -0.72
QAR SRW 1.43 1.44 1.43 1.50 1.51 1.51 1.43 1.27 -0.13 -1.18 -1.96
AR-HET LRW 0.81 1.06 0.76 0.59 0.04 -0.18 0.06 0.56 -0.40 -2.21 -3.10
AR-HET SRW 1.67 1.75 1.69 1.37 0.88 1.09 1.14 1.09 0.90 0.69 0.35

AR-HET LRW QUR LRW 4.67 2.99 2.01 0.87 0.23 -0.13 -0.48 -0.84 -0.82 -0.24 1.42
QAR SRW 1.54 1.47 1.50 1.61 1.77 1.86 1.78 1.31 0.01 -0.40 -0.50
AR-HET SRW 1.74 1.76 1.74 1.42 0.90 1.18 1.30 1.14 0.97 0.87 0.72

The first column shows the benchmark model, the second column the alternative model, and columns 3 to
13 report the QS(τ ) test statistic which is standard normally distributed (for τ = 0.10, · · · , 0.9). Negative
values of the test statistic indicate that the alternative model outperforms the benchmark and the values
in bold denote significance at 5% against this one-sided hypothesis. Instead, positive values indicate that
the benchmark outperforms the alternative model and the statistics in italics denote significance against
this one-sided hypothesis. The forecasting horizon h is equal to 12 and the out-of-sample forecast period
starts in 1985.
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Figure 1. The continuous line represents the persistence parameter in Equation 3 and the dashed line the
coefficient of πt in the volatility equation for the heteroskedastic AR model. The time series represent the
estimates of the two parameters on rolling window of 300 months and h = 1.
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Figure 2. Boxplot of the time series of the estimates of ρ̃(τ ) in Equation 7 for h = 1 as a function of the quantile
level τ (for τ = 0.1, · · · , 0.9).
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Figure 3. Fluctuation QS test for h = 12 and τ = 0.1, 0.9 with benchmark model the long rolling QAR. The
dashed lines represent the 5% one-sided critical values and rejections for negative values means that the alternative
models outperform the benchmark, and the opposite for rejections in the positive side.
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Figure 4. Fluctuation QS test for h = 12 and τ = 0.1, 0.9 with benchmark model the long rolling HET. The
dashed lines represent the 5% one-sided critical values and rejections for negative values means that the alternative
models outperform the benchmark, and the opposite for rejections in the positive side.
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