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Chapter 1

Introduction

Financial Econometrics can be broadly defined as the area of statistics and econometrics devoted to
the analysis of financial data. The goal of this book is to introduce you to the quantitative analysis
of financial data in a learning by doing approach. Instrumental to achieve this is the use of the R
programming language which is widely used in academia and the industry for data analysis. R is gaining
popularity in economics and finance for its many advantages over alternative sofware packages. It is
open source, available in all platforms, and it is supported by a wide community of users that contribute
packages, discussions, and blogs. In addition, it represents one of the most popular software for data
analytics which is becoming an increasingly important field in business as well as in finance.

Before we get started with the statistical methods and models, let’s quickly consider a few examples of
financial data. Financial markets around the world produce everyday billions of observations on, e.g.,
asset prices, shares transacted, and quotes. Every quarter thousands of companies in the U.S. and abroad
provide accounting information that are used by investors to assess the profitability and the prospects
of their investments. Exchange rates and commodities are also transacted in financial markets and their
behavior determine the price of thousand of products that we consume every day. Let’s consider a few
example of financial data that we will use througout the book and start asking questions that we want
the data to answer.

1.1 Financial Data

Figure 1.1 shows the a popular U.S. stock market index, the S&P 500 Index, divided by the smoothed
earnings and dividends from 1871 until 2016. The annual data start in 1871 and it is provided by Professor
Robert Shiller from Yale University. The Price-to-Earnings (PE) and Price-to-Dividends (PD) ratios are
considered by investors as valuation ratios since they reflect the dollar amount that you pay for the asset
for each dollar of earnings or dividends that the asset provides. A plot that shows a variable (e.g., PE
or PD ratio) over time is called a time series graph and our goal is to understand the fluctuations over
time of the variable.

The valuation ratios for the S&P 500 Index are considered measures of the valuation of the whole US
equity market and are used to assess the opportunity to invest in the U.S market. The time series graphs

1
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Figure 1.1: Annual Price-to-Earnings and Price-to-Dividends ratio for the Standard and Poors 500 Index
starting in 1871.

show that the PE has historically fluctuated between 5 and 25 with the exception of the late 1990s when
the Index skyrocketed to over 40 times smoothed earnings. The range of variation for the PD ratio up
to 1990 has been between 11.5 and 30, but at the end of the 1990s it reached a record valuation of 87,
only to subsequently fall back around 40 in the last part of the sample. The PE and PD ratios fluctuate
a lot and there are several questions that we would like to find answers to:

• Why are market valuations fluctuating so much?
• Since these are ratios, is it the price in the numerator to make the ratio adjust to its historical

values or earnings/dividends (denominator)?
• Are these fluctuations driven by the tendency of economies to have cycles of expansions and reces-

sions?
• Why smart investors did not learn from such a long history to sell at (or close to) the valuation

peak and buy at the bottom?
• What explains the extreme valuations in the late 1990s?
• The most recent valuations are still high relative to historical standards. Is that an indication that

it should decline further?

These questions are not only relevant for financial institutions managing large portfolios, but also for
small investors that are saving for retirement or for college.

The previous discussion considered the annual S&P 500 valuation ratios for over 100 years by sampling
only the last price of the year. However, financial markets trade approximately 250 days a year and
for every day we observe a closing price. The flow of news about the economy and company events
contributes to the daily fluctuations of asset prices. Figure 1.2 shows the daily price of the S&P 500
Index from January 02, 1985 to September 01, 2017 on the left panel, while the right panel shows the
daily return of the Index. The return represents the percentage change of the price in a day relative
to the price of the previous day. The value of the Index at the beginning of 1985 was 165 and grew to
2477 in September 2017. There have been two severe downturns that are apparent in this graph: the
correction in 2000 after the rapid growth of the 1990s and a second one that occured in 2008 during the
great recession of 2008-2009. The graph on the right-hand side shows that the daily returns experience
sometimes large changes, such as the one-day drop in October 19, 1987 of 22.9% and several instances
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Figure 1.2: Daily prices and returns for the Standard and Poor 500 Index.

of changes as large as positive/negative 10% in one day. In addition, it seems that there are periods in
which markets are relatively calm and fluctuate within a small range, while in other turbulent times the
Index has large variation.

At the daily frequency, rather than actual dividends and earnings that are released at the quarterly
frequency, it is news about these variables that make prices fluctuate. Several questions that we can try
to answer using data at the daily frequency:

• What forces determine the boom-bust dynamics of asset prices?
• Why do we have these clusters of calm and turbulent times rather than having “normal” times with

returns fluctuating on a constant range?
• What is the most likely value of the S&P 500 in 10 years from now?
• Are returns predictable?
• Is volatility, defined as the dispersion of returns around their mean, predictable?

Financial markets not only produce one closing price a day, but they produce also thousands of quotes
and trades for each asset every day. Figure 1.3 shows the midpoint between the bid and ask price of the
US Dollar (USD) and Japanese Yen (JPY) exchange rate in the last trading day of 2016. The picture
shows the exchange rate at the 1 minute interval, but within each interval there are several quotes that
are produced depending on the time of the day. Armed with these type of data, we can answer different
type of questions:

• What factors determine the difference between the price at which you can buy or sell an asset,
typically called the bid-ask spread?

• Is the spread constant over time or subject to fluctuations due to market events?
• Is it possible to use intra-day information to construct measures of volatility?
• Does the size of a trade have an impact on the price?
• Can we predict the direction of the next trade and the price change?

Working with high-frequency data is challenging due to large amount of quotes and transactions that
are produced every day for thousands of assets. For example, the time series in Figure 1.3 represents
a subsample of 1,320 1-minute quotes from the 31,076 available for the month of December 2016. The
1-minute quotes are obtained by taking the last quote in each 1 minute interval of weekdays of the month
from a total sample of 14,237,744 quotes. The large number of observations makes tools like spreadsheets
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Figure 1.4: Scatter plot of the logarithm of the market capitalization for a stock listed in the NYSE,
AMEX, or NASDAQ against the percentage return in the following month. Each point represents a
stock-month pair in 2015. Stocks with market cap below 100 million dollars are dropped from the
sample.

hardly useful to analyze high-frequency data. First, Microsoft Excel has a limit of rows of slighly more
than one million. This means that we would not be able to load even one-month of quotes for the
USDJPY exchange rate. Second, simple manipulations such as subsampling and aggregating the dataset
to a lower frequency in a spreadsheet can be challenging. Thus, R offers a very interesting proposition by
offering a flexible and powerful tool that is not afraid of (moderately) large dataset and allows to perform
simple operation in few lines of code. In addition, for almost any task there is a dedicated package that
provides ad-hoc functions.

These examples refer to time series that consists of the observations for a variable (e.g., the S&P 500
Index) over time. In the previous cases the time frequencies are one year, one day, and one minute and
with each frequency we discussed different issues and different questions we want to find answers. When
dealing with time series the objective of the analysis is to explain the factors driving the variation over
time of the variable. Instead, there are other settings in which the goal of the analysis is to understand
the relationship between different variables across different units (e.g., stocks) rather than over time. An
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example is provided in Figure 1.4 that shows the scatter plot of the logarithm of the market capitalization
of all the stocks listed in the NYSE, AMEX, and NASDAQ in the months of 2015 against the monthly
return in the following month. Many questions arise here:

• Do stocks of large (small) capitalization companies outperform in the following month stocks of
small (large) caps? Is size a predictor of future returns?

• In addition to size, what other company characteristics can be used to predict future stock perfor-
mance?

• Are small caps “riskier” relative to large caps?
• Small caps stocks provide (on average) higher returns relative to large cap stocks: what are the

factors explaining it? why?

In this example the data is called cross-sectional or longitudinal in the sense that the goal is to understand
the connection between two (or more) variables (e.g., size and future returns) for the same stock.

1.2 Data sources

There are several sources of financial data that, in some cases, are publicly available, while in others
are subscription-based. In this book we will use publicly available data when possible, and commercial
datasets otherwise. A short-list of data providers is:

• http://finance.yahoo.com/:
– The Yahoo Finance website allows to download daily/weekly/monthly data for individual

stocks, indices, mutual funds, and ETFs. The data provided is the opening and closing daily
price, the highest and lowest intra-day price, and the volume. In addition, the website provides
also the adjusted closing price that is adjusted for dividend payments and stock splits. The
data for Figure 1.2 above was obtained from this website.

– The data can be downloaded as a csv file under the historical prices tab
– There are several packages in R that allow to download the data directly without having to

save the file. It requires to know the ticker of the asset.
• http://www.truefx.com:

– TrueFX is a fintech startup that provides financial data and services to traders. Upon reg-
istration to their website, it is possible to download quotes data for many currency pairs in
monthly files starting from 2009.

• https://fred.stlouisfed.org/:
– the Federal Reserve Economic Database (FRED) is a very extensive database of economic and

financial data for both the United States and other countries.
– Similarly to Yahoo Finance, data can be downloaded in csv format or can be downloaded

directly using R.
• http://www.quandl.com:

– QUANDL is an aggregator of economic and financial datasets (from the Chicago Mercantile
Exchange to FRED to many others)

The ones listed above are the most popular sources of economic and financial data that are publicly
available. In addition, there are several subscription-based data providers that offer datasets in other
These databases are typically available through the library:

http://finance.yahoo.com/
http://www.truefx.com
https://fred.stlouisfed.org/
http://www.quandl.com
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• CRSP: the Center for Research in Security Prices (CRSP) at the University of Chicago provide
stock prices starting from 1926

• Compustat: provides accounting information for stocks listed in the United States
• TAQ: Trade And Quote provides tick-by-tick data for all stocks listed in the NYSE, NASDAQ, and

AMEX.

1.3 The plan

This book has two main objectives. The first is to introduce the reader to the most important methods
and models that are used to analyze financial data. In particular, the discussion focuses on three main
areas:

• Regression Model: the regression model has found extensive application in finance, in particular
in investment analysis; we will review the basic aspects and assumptions of the model and we will
apply it to measure the risk of asset portfolios.

• Time Series Models: the characteristic of time series models is that they exclusively rely on the
past values of a variable to predict its future; they are very convenient tools when dealing with
higher-frequency data since predictor variables might not be observable, hard to measure, or simply
too noisy to be useful.

• Volatility Models: volatility models are time series models that are used to forecast the variance or
the standard deviation of asset returns. The assumption underlying these models is that risk varies
over time (see Figure 1.2) and this should be accounted for by measures of risk such as the standard
deviation of returns. Since risk is an essential component of financial decisions, these models have
found widespread application, in particular with the advent of risk management practice in financial
institutions.

The goal of the book is to give you a hands-on understanding of these models and their relevance in
the analysis of financial data. However, lots of things can go wrong when statistical tools are used
“mechanically”. Put it very simply, our goal is to extract useful information from a large amount of data
and there are many issues that might distort our analysis. Analyzing data is not only concerned with
producing numbers (a more elegant term would be estimate) but, more importantly, being aware of the
potential pitfalls and possible remedies to make our analysis trustworthy.

The second objective of the book is to introduce the reader to the R programming language. R is becoming
an increasingly useful tool for data analysis in many different fields and a fierce competitor of commercial
statistical and econometric packages. The discussion of the techniques and models is closely integrated
with the implementation in R so that all tables and graphs in the book can be reproduced by the reader.
It is probably uncontroversial to say that in the era of “big data” R is a top-contender to replace the
long-serving “spreadsheets” that is nearing the end of their usable life. R puts your capabilities to analyze
data in a different level relative to what you can achieve using a spreadsheet or menu-driven software.
Also, mastering R is a skill that can be useful if you decide that your destiny is to do marketing analytics
rather than analyzing financial data.
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Readings

Some readings that you might be interested if you want to find out more about the discussion in this
chapter:

• Engle (1982)
• Shiller (2015)

Exercises

The goal of the empirical exercises in this Chapter is to review the important concepts from probability,
statistics, finance, and economics and all involve data analysis. For this exercises you are allowed to use
a spreadsheet, while from the next chapter we of R.

1. Go to Yahoo Finance and download historical data for tickers SPY (SPDR S&P 500 ETF) from
January 1995 until the most recent at the daily frequency.

• Sort the data by having the date from oldest to newest
• Plot the time series of the price (x-axis is time and y-axis the price in $)
• Plot the time series of the logarithm of the price. What are the advantages/disadvantages of

plotting the logarithm of the price rather than the price?
• Calculate the return as the percentage change of the price in day t relative to day t − 1
• Plot the return time series and discuss the evidence of clusters of high and low volatility
• Calculate the average, standard deviation, skewness and kurtosis of the asset return and discuss

the results
• Calculate the fraction of observations in the sample that are smaller than -5% and larger than

5%
• Assume that the daily returns are normally distributed with mean equal to the sample average

and variance set at the sample variance; calculate the probability that the returns is smaller
than -5% or larger than 5% and compare these values with the fractions calculated in the
previous point

• Calculate the sample quantile at 1% and 99% of the asset returns
• Assuming normality, calculate the quantiles of the normal distribution with mean and variance

equal to their sample estimates. Compare the values to the one obtained in the previous
question

2. Download from Yahoo Finance historical data for SPY (S&P 500 Index), WMT (Walmart), and AAPL
(Apple) at the daily frequency from January 1995 until the most recent available day.

• Sort the data from the oldest date to the newest date; make sure that in each row the price of
the three assets refers to the same date

• Calculate the daily returns as the percentage change of the price in day t relative to the
previous day t − 1 for the three assets

• Estimate a linear regression model in which the return of WMT and AAPL are the dependent
variable and the return of SPY is the independent variable; provide an interpretation of the
estimated coefficients

http:/finance.yahoo.com
http:/finance.yahoo.com
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• Test the null hypothesis that the intercept and the coefficient of the market are equal to zero
at 5% significance level

• Comparing the two stocks, which one is “riskier”?

3. Visit the page of Robert Shiller at Yale and download the file chapt26.xlsx

• Do a time series plot of the nominal S&P 500 Index (column P)
• Calculate the average annual growth rate of the Index
• Plot the real price (column RealP) over time, where the real value is obtained by dividing the

nominal by the CPI Index
• Calculate the average annual real growth rate of the Index
• The equity premium is defined as the difference between the average real return of investing

in the equity market (we use the S&P 500 to proxy for this) and the real interest rate (column
RealR). How large is the equity premium in this sample? Calculate the equity premium includ-
ing and excluding data from 1990: is the magnitude of the premium significantly different?
What explanation can be offered in case they are different?

• Calculate the annual percentage change of the Index (R), the dividends (D), and earnings (E).
Which of the three variables in more volatile?

• The columns P*, P*r and P*C are measures of the fundamental value of the real S&P 500 Index
that are obtained by discounting future cash flows. Plot the three measures of fundamental
value and the real Index (RealP). Are the fundamental values tracking closely the real price?
If not, what could explain the deviations of the Index price from its fundamental value?

4. Create a free account at TrueFX.com and go to the download area. TrueFX gives you access to
tick-by-tick quote prices for a wide range of currencies and the data are organized by years (starting
in 2009) and pairs. Choose a month, year and currency pair and download the file. Unzip it to a
location in your hard drive and answer the following questions:

• Open the csv file in a spreadsheet; your options are:
a. Microsoft Excel has a limit of 1,048,576 rows which is most likely not enough for the file

at hand; you will get an alert from Excel that the file was not loaded completely but still
will load the first 1,048,576 rows

b. OpenOffice Calc has a limit of approx 65,000 rows
c. Google Docs spreadsheet has a limit of 200,000 cells; since the TrueFx files have 4 columns,

you can only load up to 50,000 rows
• The file contains 4 columns: the currency pair, date and time, bid price, ask price. Assign

headers to the columns (you might have to drop one row to do that).
• What is the first and last date in your sample (that has been truncated due to “row limita-

tions”)?
• Create a mid-point column that is calculated as the average of the bid and ask price
• Plot the time series of the mid-price (x-axis is the date and y-axis the mid-price)
• Calculate the bid-ask spread which is defined as the difference between the bid and ask prices.
• Calculate the mean, min, and max of the bid-ask spread. Plot the spread over time and

evaluate whether it is varying over time.

http://www.econ.yale.edu/~shiller/data/chap26.xlsx
TrueFX.com


Chapter 2

Getting Started with R

The aim of this chapter is to get you started with the basic tasks of data analysis using R. I will assume
that you have read a Getting started with R chapter such as in Albert and Rizzo (2012) and Zuur et al.
(2009) or completed an online R 101 course at, for example, Big Data University or Datacamp. The
starting point of this chapter is how to load data in R and we will discuss two ways of doing this: loading
a data file stored in your computer and downloading the data from the internet. We will introduce R-
terminology as needed in the discussion. Once we have loaded data in R it is time to explore the dataset
by viewing the data, summarize it with statistical quantities (e.g., the mean), and plotting the variables
and their distribution.

The way R works is as follows:

• Object: R stores information (i.e., number or string values) in objects
• Structure: these objects organize information in a different way:

– data frames are tables with each column representing a variable and each row denoting an
observational unit (e.g., a stock, a state, or a month); each column can be of a different type,
for example a character string representing an address or a numerical value.

– matrices are similar to data frames with the important difference that all variables must be of
the same type (i.e., all numerical values or characters)

– lists can be considered an object of objects in the sense that each element of a list could be a
data frame or a matrix (or a list)

• Function: is a set of operations that are performed on an object; for example, the function mean()
calculates the average of numerical variable by summing all the values and dividing by the number
of elements.

• Package: is a set of functions that are used to perform certain tasks (e.g., load data, estimate
models etc)

One of the most important functions that you will use in R is help(): by typing the name of a function
within the brackets, R pulls detailed information about the function arguments and its expected outcome.
With hundred of functions used in a typical R session and each having several arguments, even the most
experienced R programmers ask for help().

9

http://bigdatauniversity.com
http://www.datacamp.com
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2.1 Reading a local data file

The file List_SP500.csv is a text file in comma separated values (csv) format that contains information
about the 500 companies that are included in the S&P 500 Index1. The code below shows how to load
a text file called List_SP500.csv using the read.csv() function. The output of reading the file is
then assigned to the splist object that is stored in the R memory. Anytime we type splist in the
command line, R will pull the data contained in the object. For example, the second line of code uses the
head(splist, 10) function to print the first 10 rows of the splist object.
splist <- read.csv("List_SP500.csv")
head(splist,10)

Ticker.symbol Security Address.of.Headquarters Date.first.added
1 MMM 3M Company St. Paul, Minnesota
2 ABT Abbott Laboratories North Chicago, Illinois 1964-03-31
3 ABBV AbbVie Inc. North Chicago, Illinois 2012-12-31
4 ACN Accenture plc Dublin, Ireland 2011-07-06
5 ATVI Activision Blizzard Santa Monica, California 2015-08-31
6 AYI Acuity Brands Inc Atlanta, Georgia 2016-05-03
7 ADBE Adobe Systems Inc San Jose, California 1997-05-05
8 AMD Advanced Micro Devices Inc Sunnyvale, California 2017-03-20
9 AAP Advance Auto Parts Roanoke, Virginia 2015-07-09
10 AES AES Corp Arlington, Virginia

The object splist represents a data frame in R terminology: a table in which each column represents a
variable and each row is a different unit (in this case companies listed in the S&P 500 Index). The splist
data frame has 4 columns and 505 rows2. The size of the data frame can be found using the dim(splist)
command which provides the dimension of the frame, or using ncol(splist) and nrow(splist). The
commands head(), dim(), ncol() and nrow() are functions that execute a series of operations on a data
objects. The function inputs are referred to as arguments, that, except for the data object, are typically
set to default values (in the case of head() the default for argument n is 6). A useful command to obtain
the properties of the columns that have been imported is str():
str(splist)

'data.frame': 505 obs. of 4 variables:
$ Ticker.symbol : Factor w/ 505 levels "A","AAL","AAP",..: 314 7 5 8 51 57 9 33 3 17 ...
$ Security : Factor w/ 505 levels "3M Company","A.O. Smith Corp",..: 1 3 4 5 6 7 8 10 9 11 ...
$ Address.of.Headquarters: Factor w/ 258 levels "Akron, Ohio",..: 224 161 161 66 212 8 206 228 197 5 ...
$ Date.first.added : Factor w/ 302 levels "","1964-03-31",..: 1 2 214 196 254 275 79 294 251 1 ...

The structure of the object provides the following information:

• the object is a data.frame
• number of observations (505) and variables (4)
• name of each variable included in the data frame (Ticker.symbol, Security, Address.of.Headquarters,

Date.first.added)
• type of the variable (factor)

1The Table is obtained from this Wikipedia page. Accessed on September 04, 2017.
2Exercise: why do we have 505 rows if the Index is composed of 500 companies? Find out.

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
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The type refers to the type of data represented by each variable and defines the operations that R can do
on the variable. For example, if a numerical variable is mistakenly defined as a string of characters than
R will not be able to perform mathematical operations on such variable and produce an error message.
The types available in R are:

• numeric: (or double) is used for decimal values
• integer: for integer values
• character: for strings of characters
• Date: for dates
• factor: represents a type of variable (either numeric, integer, or character) that categorizes the

values in a small (relative to the sample size) set of categories (or levels)

The structure of the dataset shows that all variables have been imported as factor, although this does
not seem appropriate for these variables. The factor type should be reserved to variables that have
a small number of categories. Instead, for this dataset we have that the Ticker.symbol variable has
505 levels out of 505 observations and Security has 505 levels. For the address and date variables the
number of categories is smaller but still quite large to be considered a factor. In particular, the variable
Date.first.added should be defined as a date3 rather than factor or character.

The reason for this missclassification is that the base function read.csv() is set by default to classify as
factor any variable that is considered a string. However, this can be prevented by setting the argument
stringsAsFactors = FALSE this can be prevented and the result is reported below:
splist <- read.csv("List_SP500.csv", stringsAsFactors = FALSE)
str(splist)

'data.frame': 505 obs. of 4 variables:
$ Ticker.symbol : chr "MMM" "ABT" "ABBV" "ACN" ...
$ Security : chr "3M Company" "Abbott Laboratories" "AbbVie Inc." "Accenture plc" ...
$ Address.of.Headquarters: chr "St. Paul, Minnesota" "North Chicago, Illinois" "North Chicago, Illinois" "Dublin, Ireland" ...
$ Date.first.added : chr "" "1964-03-31" "2012-12-31" "2011-07-06" ...

Adding the argument has the effect of reading all variables as character, including the date when the
stock was first added to the Index. We can redefine the type of the variable by setting the variable
Date.first.added in the splist object to be a date as done below:
splist$Date.first.added <- as.Date(splist$Date.first.added, format="%Y-%m-%d")
class(splist$Date.first.added)

[1] "Date"

Notice that:

• $ sign is used to extract a variable/column in a data frame; splist$Date.first.added extract the
Date.first.added from the data frame object splist

• as.Date() function converts the splist$Date.first.added from character to Date; the role of
the argument format="%Y-%m-%d" is to specify the format of the date being defined4

• class() is a function used to obtain the class type of an object (or the variable in a data frame as
in this case).

3One reason for defining dates is that it allows to define objects as time series and use many specialized functions available
in R.

4See help(as.Date) for more details on this and later in the book.
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Although the csv format is probably the most popular one for exchanging text files, there are other
formats and dedicated functions in R to read these files. For example, read.delim() and read.table()
are two functions that can be used for tab-delimited or space-delimited files.

An alternative to using the base function is to employ functions from other packages that presumably
improve some aspects of the default function. readr is a package that provides smarter parsing of the
variable and save the user some time in redefining variable. Below we apply the function read_csv()
from the package readr to import the List_SP500.csv file:
library(readr)
splist <- read_csv("List_SP500.csv")
str(splist, max.level=1)

Classes 'tbl_df', 'tbl' and 'data.frame': 505 obs. of 4 variables:
$ Ticker symbol : chr "MMM" "ABT" "ABBV" "ACN" ...
$ Security : chr "3M Company" "Abbott Laboratories" "AbbVie Inc." "Accenture plc" ...
$ Address of Headquarters: chr "St. Paul, Minnesota" "North Chicago, Illinois" "North Chicago, Illinois" "Dublin, Ireland" ...
$ Date first added : Date, format: NA "1964-03-31" "2012-12-31" "2011-07-06" ...
- attr(*, "spec")=List of 2
..- attr(*, "class")= chr "col_spec"

Some remarks:

• before being able to use functions from a package, it needs to be installed in your local machine.
R comes with a few base packages while the more specialized packages have to be installed by the
user. This is done with the command install.packages(readr) that needs to be performed only
once. After the installation, library(readr) or require(readr) are the commands used to pull
the package that make all the functions in the packages available in the R environment. If you call
a function from a package that is not loaded, R issues an error message that the function is not
known.

• the function read_csv() correctly classifies the variable Date.first.added as a date.
• the other variables are defined as character instead of factor

The readr package produces an object that is a data frame of class tbl_df. Although the object is still
a data frame, the class provides some additional capabilities that will be discussed in more detail in later
chapters.

Let’s consider another example. In the previous Chapter we discussed the S&P 500 Index with the data
obtained from Yahoo Finance. The dataset was downloaded and saved with name GSPC.csv to a location
in the hard drive. We can import the file in R using the read.csv() function:
index <- read.csv("GSPC.csv")
tail(index, 8)

Date GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted
8230 2017-08-23 2444.9 2448.9 2441.4 2444.0 2785290000 2444.0
8231 2017-08-24 2447.9 2450.4 2436.2 2439.0 2846590000 2439.0
8232 2017-08-25 2444.7 2454.0 2442.2 2443.1 2588780000 2443.1
8233 2017-08-28 2447.3 2449.1 2439.0 2444.2 2677700000 2444.2
8234 2017-08-29 2431.9 2449.2 2428.2 2446.3 2737580000 2446.3
8235 2017-08-30 2446.1 2460.3 2443.8 2457.6 2633660000 2457.6
8236 2017-08-31 2462.7 2475.0 2462.7 2471.6 3348110000 2471.6
8237 2017-09-01 2474.4 2480.4 2473.8 2476.6 2710730000 2476.6

http://finance.yahoo.com
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where the tail() command is used to print the bottom 8 rows of the data frame. Files downloaded from
Yahoo have, in addition to the date, 6 columns that represent the price at the open of the trading day,
highest and lowest price of the day, the closing price, the volume transacted, and the adjusted closing
price5. The structure of the object is provided here:
str(index)

'data.frame': 8237 obs. of 7 variables:
$ Date : Factor w/ 8237 levels "1985-01-02","1985-01-03",..: 1 2 3 4 5 6 7 8 9 10 ...
$ GSPC.Open : num 167 165 165 164 164 ...
$ GSPC.High : num 167 166 165 165 165 ...
$ GSPC.Low : num 165 164 163 164 164 ...
$ GSPC.Close : num 165 165 164 164 164 ...
$ GSPC.Volume : num 67820000 88880000 77480000 86190000 92110000 ...
$ GSPC.Adjusted: num 165 165 164 164 164 ...

In this case all variables are classified as numerical except for the Date variable that is read as a string
and thus assigned the factor type. This can be solved by adding the argument stringAsFactors =
FALSE and then define the variable using as.Date. Alternatively, the file can be read using read_csv()
that is able to identify that the first column is a date.

2.2 Saving data files

In addition to reading files, we can also save (or write in R language) data files to the local drive. This
is done with the write.csv() function that outputs a csv file of the data frame or matrix provided.
The example below adds a column to the index data frame called Range which represents the intra-day
percentage difference between the highest and lowest intra-day price. The frame is then saved with name
newdf.csv.
index <- read_csv("GSPC.csv")
index$Date <- as.Date(index$Date, format="%Y-%m-%d")
# create a new variable called range
index$Range <- 100 * (index$GSPC.High - index$GSPC.Low) / index$GSPC.Low
write.csv(index, file = "indexdf.csv", row.names = FALSE)

2.3 Time series objects

Time series data and models are widely used and there are several packages in R that provide an infras-
tructure to manage this type of data. The three most important packages are ts, zoo, and xts that
provide functions to define time series objects, that is, objects in which variables are ordered in time.
Since in this book we will mostly working with the xts package, we illustrate its main properties here
and discuss further topics in later chapters.

The index object that was used above is currently a data frame and we would like to define it as a time
series object starting in 1985-01-02 and ending in 2017-09-01. Once we define index to be a time series
object, each column of the data frame will have implicitly defined the dates and properties related its

5The closing price adjusted for stock splits and dividends.
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time series status. An example of when this becomes useful is when plotting the variables since the x-axis
is automatically set to represent time.

The code below defines the time series object index.xts that is obtained by the index object as a xts
object with dates equal to the Date column:
library(xts)
index.xts <- xts(subset(index, select=-Date), order.by=index$Date)
head(index.xts)

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted Range
1985-01-02 167.20 167.20 165.19 165.37 67820000 165.37 1.21678
1985-01-03 165.37 166.11 164.38 164.57 88880000 164.57 1.05244
1985-01-04 164.55 164.55 163.36 163.68 77480000 163.68 0.72845
1985-01-07 163.68 164.71 163.68 164.24 86190000 164.24 0.62928
1985-01-08 164.24 164.59 163.91 163.99 92110000 163.99 0.41486
1985-01-09 163.99 165.57 163.99 165.18 99230000 165.18 0.96347

Some comments on the code above:

• the function xts from package xts requires two arguments: 1) a data object to convert to xts, 2)
a sequence of dates to assign a time stamp to each observation.

• the first argument of xts() is subset(index, select=-Date) that takes the object index and
eliminates the column Date (since there is a minus sign in front of the column name)

• the second argument is order.by= that provides the dates of each row in the data frame
• the reason for dropping the Date column is that the index.xts object will have the dates as one

of its features so that we do not need anymore a dedicated column to keep track of the dates.
• The first 6 rows of the data frame show the dates associated with each row; however, the date is

not a column (as it is in index) but the row names. The dates can be extracted from the time
series object with the command time(index.xts).

The index.xts is a xts object on which we can apply convenient functions to handle, analyze and plot
the data. Some examples of functions that can be used to extract information form the object are:
start(index.xts) # start date
end(index.xts) # end date
periodicity(index.xts) # periodicity/frequency (daily, weekly, monthly)

[1] "1985-01-02"
[1] "2017-09-01"
Daily periodicity from 1985-01-02 to 2017-09-01

In some situations we might be interested in changing the periodicity of our time series. For example,
the dataset index.xts is at the daily frequency and we might want to create a new object that samples
the data at the weekly or monthly frequency. The xts package provides the functions to.weekly() and
to.monthly() and an example is given below. The default in subsampling the time series is to take the
first value of the period, that is, the Monday value for weekly data and the first day of the month for
monthly data.
index.weekly <- to.weekly(index.xts)

index.xts.Open index.xts.High index.xts.Low index.xts.Close index.xts.Volume index.xts.Adjusted
1985-01-04 167.20 167.20 163.36 163.68 234180000 163.68
1985-01-11 163.68 168.72 163.68 167.91 509830000 167.91



2.4. READING AN ONLINE DATA FILE 15

1985-01-18 167.91 171.94 167.58 171.32 634000000 171.32

Other functions that allow to subsample the time series from daily to another frequency are apply.weekly()
and apply.monthly() that apply a certain function to each week or month. For example:
index.weekly <- apply.weekly(index.xts, "first")

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted Range
1985-01-04 167.20 167.20 165.19 165.37 67820000 165.37 1.21678
1985-01-11 163.68 164.71 163.68 164.24 86190000 164.24 0.62928
1985-01-18 167.91 170.55 167.58 170.51 124900000 170.51 1.77229

index.weekly <- apply.weekly(index.xts, "last")

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted Range
1985-01-04 164.55 164.55 163.36 163.68 77480000 163.68 0.72845
1985-01-11 168.31 168.72 167.58 167.91 107600000 167.91 0.68027
1985-01-18 170.73 171.42 170.66 171.32 104700000 171.32 0.44533

Another task that is easy with xts objects is to subset a time series. The code below provides several
examples of selecting only the observations for year 2007, between 2007 and 2009 ('2007/2009'), before
2007 ('/2007'), and after 2007 ('2007/') or between two specific dates ('2007-03-21/2008-02-12').
the package allows also to use :: instead of forward slash / in subsetting the object. This syntax is
specific to xts objects and does not work for time series objects of other classes6.
index.xts['2007'] # only year 2007
index.xts['2007/2009'] # between 2007 and 2009
index.xts['/2007'] # up to 2007
index.xts['2007/'] # starting form 2007
index.xts['2007-03-21/2008-02-12'] # between March 21, 2007 and February 12, 2008

2.4 Reading an online data file

There are many websites that provide access to economic and financial data, such as Yahoo Finance and
FRED, among others. R is able to access an url address and download a dataset in the R session, thus
saving the user the time of visiting the website and downloading the file to the local drive. Even the base
function read.csv() can do that as illustrated in the example below:
url <- 'https://fred.stlouisfed.org/graph/fredgraph.csv?chart_type=line&recession_bars=on&lg_scales=&bgcolor=%23e1e9f0&graph_bgcolor=%23ffffff&fo=Open+Sans&ts=12&tts=12&txtcolor=%23444444&show_legend=yes&show_axis_titles=yes&drp=0&cosd=1999-01-01&coed=2017-08-01&height=450&stacking=&range=&mode=fred&id=EXUSEU&transformation=lin&nd=1999-01-01&ost=-99999&oet=99999&lsv=&lev=&mma=0&fml=a&fgst=lin&fgsnd=2009-06-01&fq=Monthly&fam=avg&vintage_date=&revision_date=&line_color=%234572a7&line_style=solid&lw=2&scale=left&mark_type=none&mw=2&width=1168'
data <- readr::read_csv(url)
head(data, 3)

# A tibble: 3 x 2
DATE EXUSEU

<date> <dbl>
1 1999-01-01 1.1591
2 1999-02-01 1.1203
3 1999-03-01 1.0886

6The function window() is more general and works for all time series objects
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tail(data, 3)

# A tibble: 3 x 2
DATE EXUSEU

<date> <dbl>
1 2017-06-01 1.1233
2 2017-07-01 1.1530
3 2017-08-01 1.1783

The url above refers to the ticker EXUSEU (USD-EURO exchange rate) from January 1999 until August
2017 at the monthly frequency. However, it would be convenient to have a wrapper function that takes
a ticker and does all these operations automatically. One such function is getSymbols() from package
quantmod that can be used to download data from Yahoo and FRED and produces xts objects7. The
next two sections discuss how to use getSymbols() to pull data from Yahoo and FRED and several
operations to get the data ready for analysis.

2.4.1 Yahoo Finance

After loading the quantmod package, we can start using the function getSymbols(). We need to provide
the function with the stock tickers for which we want to obtain historical data. Another argument that
we need to provide is the source and in this case it is src="yahoo". Actually this was not needed since
"yahoo" is the default value. Finally, we can specify the period that we want to download data for with
the from= and to= arguments. Below is an example:
library(quantmod)
data <- getSymbols(c("^GSPC","^DJI"), src="yahoo", from="1990-01-01")
periodicity(GSPC)
periodicity(DJI)
head(DJI, 2)

Daily periodicity from 1990-01-02 to 2017-09-01
Daily periodicity from 1990-01-02 to 2017-09-01

DJI.Open DJI.High DJI.Low DJI.Close DJI.Volume DJI.Adjusted
1990-01-02 2748.7 2811.7 2732.5 2810.1 20680000 2810.1
1990-01-03 2814.2 2834.0 2786.3 2809.7 23620000 2809.7

By default, getSymbols() downloads data from Yahoo at the daily frequency and the object has 6
columns representing the open, high, low, close, volume and adjusted closing price for the stock. In this
example we are using the function to retrieve historical data for the S&P 500 Index (ticker: ˆGSPC) and
the Dow Jones Index (ˆDJI). getSymbols() can handle more than one ticker and creates a xts object
for each ticker that is provided (excluding the ˆ symbol)8.

The quantmod package has also functions to extract the relevant variables when not all the information
provided is needed for the analysis. In the example below, we extract the adjusted closing price with the

7There are other functions that can be used for this task. One is the get.hist.quote() from the package tseries
and the package fImport includes the yahooSeries() and fredSeries() functions. R has so many packages that there are
different ways of doing almost any data analaysis task. However, for the purpose of this book I decided to stick to a few
ways of doing things which I hope it is easier to learn. Once you are a proficient R programmer, you can find your way in
the package jungle!

8When downloading only one symbol, the additional argument auto.assign=FALSE assigns the data to the object data.
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command Ad() from GSPC and DJI and then merge the two time series in a new xts data frame called
data.new. The merge() command is useful in combining time series because it matches the dates of the
rows so that each row represents observations for the same time period. In addition to Ad(), the package
defines other functions:

• Op(), Cl(), Hi(), Lo() for the open, close, high, and low price, and Vo() for volume
• OpCl() for the open-to-close daily return and ClCl() for the close-to-close return
• LoHi() for the low-to-high difference (also called the intra-day range)

data.new <- merge(Ad(GSPC),Ad(DJI))

GSPC.Adjusted DJI.Adjusted
1990-01-02 359.69 2810.1
1990-01-03 358.76 2809.7
1990-01-04 355.67 2796.1

A characteristic of the getSymbols() function is to allow the downloaded data to be stored in an en-
vironment. If you type ls() in your R console you will get a list of items that are currently stored in
your global environment, that is, the place where the objects are stored. In the previous use of the
function we did not specify the argument env and the default is tha the object will be assigned to the
global environment. However, there are situations in which we might want to store the data in a separate
environment and then use specialized functions to extract the data. Consider the new environment as
a folder in the global environment where some files are stored. The example below takes the list of the
S&P 500 companies and downloads the data in a new environment called store.sp. The function prints
a message that pausing 1 second between requests for more than 5 symbols while downloading
data. The command ls(store.sp) can be used to pull a list of the objects stored in the store.sp
environment. This example shows the advantage of using a programming language such as R: with only
three lines of code we are able to download data for 500 stocks at the daily frequency in a matter of
minutes.
splist <- read.csv("List_SP500.csv", stringsAsFactors = FALSE)
store.sp <- new.env()
getSymbols(splist$Ticker.symbol, env=store.sp, from="2010-01-01", src="yahoo")

2.4.2 FRED

The getSymbols() can be used to download macroeconomic data from the Federal Reserve Economic
Data (FRED) database. Also in this case you need to know the ticker of the variable that you are inter-
ested to download. For example, UNRATE refers to the monthly civilian unemployment rate in percentage,
CPIAUCSL is the ticker for the monthly Consumer Price Index (CPI) all urban consumers seasonally ad-
justed, and GDPC1 points to the quarterly real Gross Domestic Product (GDP) seasonally adjusted. There
are two differences with the code used earlier: the src=FRED instructs the function to download the data
from FRED, and the second is that it is not possible to specify a start/end date for the series. The code
below does the following:

• download the time series for the three tickers
• merge the three time series
• subsample the merged object to start in January 1950
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library(quantmod)
macrodata <- getSymbols(c('UNRATE','CPIAUCSL','GDPC1'), src="FRED")
macrodata <- merge(UNRATE, CPIAUCSL, GDPC1)
macrodata <- window(macrodata, start="1950-01-02")

UNRATE CPIAUCSL GDPC1
1950-02-01 6.4 23.61 NA
1950-03-01 6.3 23.64 NA
1950-04-01 5.8 23.65 2147.6
1950-05-01 5.5 23.77 NA

UNRATE CPIAUCSL GDPC1
2017-05-01 4.3 243.85 NA
2017-06-01 4.4 243.79 NA
2017-07-01 4.3 244.05 NA
2017-08-01 4.4 NA NA

Merging the three variables produces NA since GDPC1 is available at the quarterly frequency and UNRATE
and CPIAUCSL at the monthly frequency.

2.4.3 Quandl

Quandl works as an aggregator of public databases, plus they offer access to subscription databases.
Many financial and economic datasets can be accessed using Quandl and the R package Quandl. The
tickers for FRED variables are the same we used earlier with the addition of FRED/. The output can be
in many formats, the default being a data frame with a column Date. In the examples below I will use
the xts type.
library(Quandl)
macrodata <- Quandl(c("FRED/UNRATE", 'FRED/CPIAUCSL', "FRED/GDPC1"),

start_date="1950-01-02", type="xts")
head(macrodata)

FRED.UNRATE - Value FRED.CPIAUCSL - Value FRED.GDPC1 - Value
1950-02-01 6.4 23.61 NA
1950-03-01 6.3 23.64 NA
1950-04-01 5.8 23.65 2147.6
1950-05-01 5.5 23.77 NA
1950-06-01 5.4 23.88 NA
1950-07-01 5.0 24.07 2230.4

The quandl package produces an object macrodata that is already merged by date and ready for analysis.

2.4.4 Reading large files

The read.csv() file has some nuisances, but overall it works well and it is easy to use. However, it
does not perform well when data files are large (in a sense to be defined). The fact that the base read
functions are slow has lead to the development of alternative functions and packages that have two
advantages: speed and better classification of the variables. The packages readr and data.table have
become popular for fast importing and below I will make a comparison of the speed of importing the
same file for the three functions.
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The dataset that I will use in this comparison is obtained from the Center for Research in Security Prices
(CRSP) at the University of Chicago and was used in Figure 1.4. The variables in the dataset are:

• PERMNO: identificative number for each company
• date: date in format 2015/12/31
• EXCHCD: exchange code
• TICKER: company ticker
• COMNAM: company name
• CUSIP: another identification number for the security
• DLRET: delisting return
• PRC: price
• RET: return
• SHROUT: share oustanding
• ALTPRC: alternative price

The observations are all companies listed in the NYSE, NASDAQ, and AMEX from January 1985 until
December 2016 at the monthly frequency for a total of 3,627,236 observations and 16 variable. The size
of the file is 328Mb which, in the era of big data, is actually quite small. Remember that on a 64 bit
machine the RAM memory determines the constraint to the size of the file that you can import in R.

First, we import the file using the base read.csv() function. To calculate the time that it took the
function to import the dataset I will use the Sys.time() function that provides the current time, save
it to start.time, and then take the difference between the ending time and start.time. Below is the
code:
start.time <- Sys.time()
crsp <- read.csv("crsp_eco4051_jan2017.csv", stringsAsFactors = FALSE)
end.csv <- Sys.time() - start.time

Time difference of 37.843 secs

The read.csv() function took 37.84 seconds to load the file. The first alternative that we consider is the
read_csv() function from the readr package that aims at improving speed and variable classification
(including dates, as seen earlier). Below is the code:
library(readr)
start.time <- Sys.time()
crsp <- read_csv("crsp_eco4051_jan2017.csv")
end_csv <- Sys.time() - start.time

Time difference of 9.5125 secs

The read_csv() function reduces the reading time from 37.84 to 9.51, which is a reduction of 4 times.
Finally, the function fread() from the data.table package9. Notice that in this case I am not loading the
package with the library(data.table) but call the function with the notation data.table::fread()10:

9The arguments verbose and showProgress prevent the function from printing intermediate information about the
reading progress. In a typical session you might want to have updates on the status of the reading, in particular when
reading large files. I set the data.table argument to false because I prefer to have fread produce a data frame rather than
a data.table object. The data.table package provides functionalities that are particularly useful when working with large
datasets which we won’t use in this book.

10One situation this might be useful is when different packages have functions with the same name.
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start.time <- Sys.time()
crsp <- data.table::fread("crsp_eco4051_jan2017.csv",

data.table=FALSE,
verbose=FALSE,
showProgress = FALSE)

end.fread <- Sys.time() - start.time
end.fread

Time difference of 6.5381 secs

Here the reduction is even larger since the function is 5.8 time faster relative to read.csv() and 1.5
times relative to read_csv(). Although the file was not very large, there is a remarkable difference in
reading speed among these functions and suggest to use the latter two in case of larger data files.

2.5 Transforming the data

Most of the times the data that we import require creating new variables that are transformations of
existing ones. In finance, a common case is creating returns of an asset as the percentage growth rate
of the price. The same transformation is typically applied to macroeconomic variables, in particular to
calculate the growth rate of real GDP or the inflation rate (that is the growth rate of a price index,
such as CPIAUCSL). If we define GDP or the asset price in month t by Pt, the growth rate or return is
calculated in two possible ways:

1. Simple return: Rt = (Pt − Pt−1)/Pt−1

2. Logarithmic return: rt = log(Pt) − log(Pt−1)

An advantage of using logarithmic returns is that it simplifies the calculation of multiperiod returns.
This is due to the fact that the (continuously compounded) return over k periods is given by rk

t =
log(Pt) − log(Pt−k) which can be expressed as the sum of one-period logarithmic returns, that is

rk
t = log(Pt) − log(Pt−k) =

k∑
j=1

rt−j+1

Instead, for simple returns the multi-period return would be calculated as Rk
t =

∏k
j=1(1 + Rt−j+1) − 1.

One reason to prefer logarithmic to simple returns is that it is easier to derive the properties of the sum of
random variables, rather than their product. The disadavantage of using the continuously compounded
return is that when calculating the return of a portfolio the weighted average of log returns of the
individual assets is only an approximation of the log portfolio return. However, at the daily and monthly
horizons returns are very small and thus the approximation error is relatively minor.

Transforming and creating variables in R is quite simple. In the example below, data for the S&P 500
Index is obtained from Yahoo using the getSymbols() function and the adjusted closing price is used to
create two new variables/columns, ret.simple and ret.log. To do this we employ the log() function
that represents the natural logarithm, and the lag(, k) function which lags a time series by k periods. An
alternative way of calculating returns is using the diff() command that calculates the k-period difference
of the variable, Pt − Pt−k. The operations are applied to all the elements of the vector Ad(GSPC) and the
result is vector of the same dimension.
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GSPC <- getSymbols("^GSPC", from="1990-01-01", auto.assign = FALSE)
GSPC$ret.simple <- 100 * (Ad(GSPC) - lag(Ad(GSPC), 1)) / lag(Ad(GSPC),1)
GSPC$ret.log <- 100 * (log(Ad(GSPC)) - lag(log(Ad(GSPC)), 1))
GSPC$ret.simple <- 100 * diff(Ad(GSPC)) / lag(Ad(GSPC), 1)
GSPC$ret.log <- 100 * diff(log(Ad(GSPC)))
head(GSPC)

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted ret.simple ret.log
1990-01-02 353.40 359.69 351.98 359.69 162070000 359.69 NA NA
1990-01-03 359.69 360.59 357.89 358.76 192330000 358.76 -0.25855 -0.25889
1990-01-04 358.76 358.76 352.89 355.67 177000000 355.67 -0.86130 -0.86503
1990-01-05 355.67 355.67 351.35 352.20 158530000 352.20 -0.97562 -0.98041
1990-01-08 352.20 354.24 350.54 353.79 140110000 353.79 0.45145 0.45043
1990-01-09 353.83 354.17 349.61 349.62 155210000 349.62 -1.17867 -1.18567

Some comments on the new variables created:

• the values of ret.simple and ret.log are very close which confirms that using the approximated
ret.log produces a very small error (at the daily frequency)

• the first value of the new variables is missing because we do not have Pt−1 for the first observation

Transformations can also be applied to all the elements of a data frame, instead of a selected column.
For example, we might have an xts object that contains the adjusted closing prices of several assets and
we would like to calculate the daily returns for all assets. We can apply the same commands discussed
above to the data frame as in the example below.
# "^GSPC" = S&P 500 Index, "^N225" = Nikkei 225, "^STOXX50E" = EURO STOXX 50
data <- getSymbols(c("^GSPC", "^N225", "^STOXX50E"), from="2000-01-01")
price <- merge(Ad(GSPC), Ad(N225), Ad(STOXX50E))
ret <- 100 * diff(log(price))
tail(ret, 5)

GSPC.Adjusted N225.Adjusted STOXX50E.Adjusted
2017-08-29 0.084247 -0.45011 -0.96370
2017-08-30 0.460453 0.74089 0.45613
2017-08-31 0.570467 0.71362 0.52043
2017-09-01 0.198058 0.22996 0.65284
2017-09-04 NA -0.93481 NA

2.6 Plotting the data

Visualizing data is an essential task of data analysis. It helps capture trends and patterns in the data that
can inspire further investigation and it is also very useful in communicating the results of an analysis.
Plotting is one of the great features of R either for simple and quick plots or for more sophisticated
data visualization tasks. The basic command for plotting in R is plot() that takes as arguments the x-
variable, the y-variable, the type of plot (e.g., "p" for point and "l" for line) and additional arguments to
customize the plot (see help(plot) for details). Figure 2.1 shows a time series plot of the S&P 500 Index
starting in 1985 at the daily frequency. Notice that the object index is a csv file downloaded from Yahoo
Finance that has the usual open/high/low/close/volume/adjusted close structure plus a Date column.
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Figure 2.1: Plot of the S&P 500 Index over time starting in 1985.

After reading the file, it is necessary to define the Date column as a date and we then use that column
as the x-axis while on the y-axis we plot the adjusted closing price.
setwd(location)
index <- read_csv("GSPC.csv")
index$Date <- as.Date(index$Date, format="%Y-%m-%d")
plot(index$Date, index$GSPC.Adjusted, type="l")

The plots can be customized along many dimensions such as color and size of the labels, ticks, title, line
and point type and much more. In Figure 2.2 the previous graph is customized by changing the color of
the line to "orange", changing the label’s size (cex=0.5), the labels with xlab and ylab, and finally the
title of the graph by setting main.
plot(index$Date, index$GSPC.Adjusted,

type="l", xlab="", ylab="S&P 500 Index Value (log-scale)",
main="S&P 500 Index", col="orange", cex.lab = 0.5)

An advantage of defining time series as xts objects is that there are specialized functions to plot. For
example, when we use the base function plot() on a xts object it calls a plot.xts() functions that
understands the nature of the data and, among other things, sets the x-axis to the time period of the
variable without the user having to specify it (as we did in the previous graph). Figure 2.3 shows the
time seris plot of the adjusted closing price of the S&P 500 Index.
plot(Ad(GSPC), main="S&P 500 Index")

For many economic and financial variables that display exponential growth over time, it is often convenient
to plot the log of the variable rather than its level. This has the additional advantage that differences
between the values at two points in time represent an approximate percentage change of the variable in
that period of time. This can be achieved by plotting the natural logarithm of the variable as follows:
plot(log(Ad(GSPC)), xlab="Time",ylab="S&P 500 Index")

There are several plotting packages in R that can be used as an alternative to the base plotting functions.
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Figure 2.2: Logarithm of the S&P 500 Index at the daily frequency.
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Figure 2.4: Time series plot of the logarithm of the S&P 500 Index.

I will discuss the ggplot2 package11 which is very flexible and makes it (relatively) easy to produce
sophisticated graphics. This package has gained popularity among R users since it produces elegant
graphs and greatly simplifies the production of advanced visualization. However, ggplot2 does not
interact with xts objects so that when plotting time series we need to create a Date variable and convert
the object to a data frame. This is done in the code below, where the first line produces a data frame
called GSPC.df that has a column Date and the remaining columns are from the GSPC object downloaded
from Yahoo Finance. The function coredata() extracts the data frame from the xts object12 The
ggplot2 has a qplot() function13 that is similar to the base plot() function and requires:

• the x and y variables
• if data= is provided, then only the variable name is required
• the default plotting is points and if a different type is required it needs to be specified with geom

In the illustration below, the GSPC is converted to a data frame and then plotted using the qplot()
against the date variable.
GSPC.df <- data.frame(Date = time(GSPC), coredata(GSPC))
library(ggplot2)
qplot(Date, GSPC.Adjusted, data=GSPC.df, geom="line")

11See Wickham (2009) for more details.
12If we did not include the coredata() part in this case the data frame would have been produced as well, but with row

names represented by the dates (as in xts object). Not a big deal, though.
13see http://docs.ggplot2.org/dev/vignettes/qplot.html for more details.

http://docs.ggplot2.org/dev/vignettes/qplot.html
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In addition to the qplot() function, the ggplot2 package provides a grammar to produce graphs. There
are four building blocks to produce a graph:

• ggplot(): creates a new graph; can take as argument a data frame
• aes(): the aesthetics requires the specification of the x and y axis and the possible groups of

variables
• geom_: the geometry represents the type of plot that the user would like to plot; some examples14:

– geom_point()
– geom_line()
– geom_histogram()
– geom_bar()
– geom_smooth()

• theme: themes represents different styles of the graph

In Figure 2.5 there are several examples of time series plots for the S&P 500. The package ggplot2 let
us save the plot in an object (plot1) which we can later plot or modify by changing some of its features
(as for plot2, plot3, and plot4 below). Below I use also the function grid.arrange() from package
grid.Extra to make a 2x2 grid of the 4 plots.
plot1 <- ggplot(GSPC.df, aes(Date, GSPC.Adjusted)) + geom_line(color="darkgreen")
plot2 <- plot1 + theme_bw()
plot3 <- plot2 + theme_classic() + labs(x="", y="Index", title="S&P 500")
plot4 <- plot3 + geom_line(color="darkorange") + geom_smooth(method="lm") +

theme_dark() + labs(subtitle="Period: 1985/2016", caption="Source: Yahoo")
library(gridExtra)
grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

A scatter plot between two variables is similarly produced by replacing the Date in the previous graphs
with another variable. To produce Figure 2.6 I retrieve the returns for the S&P 500 and Nikkei 225
indices and calculate the monthly returns. The Figure shows the same scatter plot, but with different
themes, labels, the geom_vline() and geom_hline() that produces vertical and horizontal lines, and the
linear fit of regressing the US on the Japanese index.
data <- getSymbols(c("^GSPC", "^N225"), from="1990-01-01")
price <- merge(Ad(to.monthly(GSPC)), Ad(to.monthly(N225)))
ret <- 100 * diff(log(price))

14The complete list of geoms is available at http://docs.ggplot2.org/current/

http://docs.ggplot2.org/current/
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Figure 2.5: Put a caption here

−20

−10

0

10

−20 −10 0 10 20

NIKret

S
P

re
t

−20

−10

0

10

−20 −10 0 10 20

NIKKEI

S
P

50
0

Figure 2.6: Put a caption here

GN.df <- data.frame(Date=time(price), coredata(merge(price,ret)))
names(GN.df) <- c("Date","SP", "NIK", "SPret","NIKret")

plot1 <- ggplot(GN.df, aes(NIKret, SPret)) + geom_point(color="red") +
geom_vline(xintercept = 0) + geom_hline(yintercept = 0)

plot2 <- plot1 + geom_smooth(method="lm", se=FALSE) + theme_bw() +
labs(x="NIKKEI", y="SP500")

grid.arrange(plot1, plot2, ncol=2)
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2.7 Exploratory data analysis

A first step in data analysis is to calculate descriptive statistics that summarize the main statistical
features of the distribution of the data, such as the average/median returns, the dispersion, the skewness
and kurtosis. A function that provides a preliminary analysis of the data is summary() that has the
following output for the simple and logarithmic returns:
summary(GSPC$ret.simple)

Index ret.simple
Min. :1990-01-02 Min. :-9.0350
1st Qu.:1996-11-20 1st Qu.:-0.4491
Median :2003-10-27 Median : 0.0488
Mean :2003-10-28 Mean : 0.0339
3rd Qu.:2010-09-29 3rd Qu.: 0.5569
Max. :2017-09-01 Max. :11.5800

NA's :1

summary(GSPC$ret.log)

Index ret.log
Min. :1990-01-02 Min. :-9.4695
1st Qu.:1996-11-20 1st Qu.:-0.4501
Median :2003-10-27 Median : 0.0488
Mean :2003-10-28 Mean : 0.0277
3rd Qu.:2010-09-29 3rd Qu.: 0.5554
Max. :2017-09-01 Max. :10.9572

NA's :1

Comparing the estimates of the mean, median, and 1st and 3rd quartile (25% and 75%) for the simple
and log returns shows that the values are very close. However, when we compare the minimum and the
maximum the values are quite different: the maximum drop is -9.035% for the simple return and -9.47%
for the logarithmic return, while the maximum gain is 11.58% and 10.957%, respectively. The reason for
the difference is that the logarithmic return is an approximation to the simple return that works well
when the returns are small but becomes increasingly unreliable for large (positive or negative) returns.

Descriptive statistics can also be obtained by individual commands such as mean(), sd() (standard
deviation), median(), and empirical quantiles (quantile(, tau) with tau a value between 0 and 1). If
there are missing values in the series we need also to add the na.rm=TRUE argument to the function in
order to eliminate these values. The package fBasics contains the functions skewness() and kurtosis()
that are particularly relevant in the analysis of financial data. This package provides also the function
basicStats() that provides a table with all of these descriptive statistics:
library(fBasics)
basicStats(GSPC$ret.log)

ret.log
nobs 6974.000000
NAs 1.000000
Minimum -9.469512
Maximum 10.957197
1. Quartile -0.450125
3. Quartile 0.555389
Mean 0.027669

http://cran.r-project.org/web/packages/fBasics/index.html
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Median 0.048804
Sum 192.937921
SE Mean 0.013345
LCL Mean 0.001508
UCL Mean 0.053831
Variance 1.241906
Stdev 1.114409
Skewness -0.248201
Kurtosis 8.875874

In addition, when the analysis involves several assets we want to measure their linear dependence through
measures like the covariance and correlation. For example, the my.df object defined above is composed of
the US and Japanese equity index and it is interesting to measure how the two index returns co-move. The
functions to estimate the covariance is cov() and the correlation is cor(), with the additional argument
of use='complete.obs' that tells R to estimate the quantity for all pairs on the set of dates that are
common to all assets:
Ret <- subset(GN.df, select=c("SPret","NIKret"))
cov(Ret, use='complete.obs')

SPret NIKret
SPret 17.053 13.470
NIKret 13.470 38.881

The elements in the diagonal are the variances of the index returns and the off-diagonal element represents
the covariance between the two series. The sample covariance is equal to 13.47 which is difficult to
interpret since it depends on the scale of the two variables. That is a reason for calculating the correlation
that is scaled by the standard deviation of the two variable and is thus bounded between 0 and 1. The
correlation matrix is calculated as:
cor(Ret, use='complete.obs')

SPret NIKret
SPret 1.00000 0.52309
NIKret 0.52309 1.00000

the diagonal elements are equal to 1 because they represent the correlation of the S&P 500 (N225) with
the S&P 500 (N225), while the off-diagonal element is the sample correlation between the two indices.
It is equal to 0.52 which indicates that the monthly returns of the two equity indices co-move, although
their correlation is not extremely high.

Another useful exploratory tool in data analysis is the histogram that represents an estimator of the
distribution of a variable. Histograms are obtained by dividing the range of a variable in small bins and
then count the fraction of observations that fall in each bin. The histogram plot shows the distribution
characteristics of the data. The function hist() in the base package and the geom_histogram() function
in ggplot2 are the commands to use in this task:
hist(GSPC$ret.log, breaks=50, xlab="", main="") # base function
qplot(ret.log, data=GSPC, geom="histogram", bins=50) # ggplot function

In these plots we divided the range of the variable into 50 bins and the number in the y-axis represents the
number of observations. The histogram shows that daily returns are highly concentrated around 0 and
with long tails, meaning that there are several observations that are far from 0 (which is approximately
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Figure 2.7: Histogram of the daily return of the SP500 produced with base graphics (left) and the ‘ggplot2‘
package (right).

the mean/median of the series).

We can also add a nonparametric estimate of the frequency that smooths out the roughness of the
histogram and makes the density estimates continuous15:
# base function
hist(GSPC$ret.log, breaks=50, main="", xlab="", ylab="",prob=TRUE)
lines(density(GSPC$ret.log,na.rm=TRUE),col=2,lwd=2)
box()
# ggplot function
ggplot(GSPC, aes(ret.log)) +

geom_histogram(aes(y = ..density..), bins=50, color="black", fill="white") +
geom_density(color="red", size=1.2) +
theme_bw()

2.8 Dates and Times in R

When we read a time series dataset it is convenient to define a date variable that keeps track of the time
ordering of the variables. We did this already when plotting the S&P 500 when we used the command
index$Date <- as.Date(index$Date, format="%Y-%m-%d"). as.Date is a command that takes a string
as input and defines it of the Date type. In this case we specified the format of the variable which, in
this case, is composed of a 4-digit year (%Y otherwise %y for 2-digit), a hyphen, the 2 digit month (%m),
a hyphen, and finally the two digit day (%d). Other possible formats of the day is the weekday (%a
abbreviate or %A unabbreviated) and month name (%b abbreviate or %B unabbreviated). The default R
output is yyyy-mm-dd as shown in the examples below for different date formats:

15The prob=TRUE argument makes the y-scale probabilities instead of frequencies
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Figure 2.8: Histogram of the daily return of the SP500 produced with base graphics (left) and the ‘ggplot2‘
package (right) together with a smoothed density.

as.Date("2011-07-17") # no need to specify format
as.Date("July 17, 2011", format="%B %d,%Y")
as.Date("Monday July 17, 2011", format="%A %B %d,%Y")
as.Date("17072011", format="%d%m%Y")
as.Date("11@17#07", format="%y@%d#%m")

[1] "2011-07-17"
[1] "2011-07-17"
[1] "2011-07-17"
[1] "2011-07-17"
[1] "2011-07-17"

Once we have defined dates, we can also calculate the time passed between two dates by simply subtracting
two dates or using the difftime() function that allows to specify the time unit of the result(e.g., "secs",
"days", and "weeks"):
date1 <- as.Date("July 17, 2011", format="%B %d,%Y")
date2 <- Sys.Date()
date2 - date1
difftime(date2, date1, units="secs")
difftime(date2, date1, units="days")
difftime(date2, date1, units="weeks")

Time difference of 2241 days
Time difference of 193622400 secs
Time difference of 2241 days
Time difference of 320.14 weeks

In addition to the date, we might need to associate a time of the day to each observation as in the case of
high-frequency data. In the previous Chapter we discussed the tick-by-tick quote data for the dollar-yen
exchange rate obtained from TrueFX. The first 10 observations of the file for the month of December
2016 is shown below:

www.truefx.com
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data.hf <- data.table::fread('USDJPY-2016-12.csv',
col.names=c("Pair","Date","Bid","Ask"),
colClasses=c("character","character","numeric","numeric"),
data.table=FALSE, verbose = FALSE, showProgress = FALSE)

Pair Date Bid Ask
1 USD/JPY 20161201 00:00:00.041 114.68 114.69
2 USD/JPY 20161201 00:00:00.042 114.68 114.69
3 USD/JPY 20161201 00:00:00.186 114.68 114.69
4 USD/JPY 20161201 00:00:00.188 114.68 114.69
5 USD/JPY 20161201 00:00:00.189 114.69 114.70
6 USD/JPY 20161201 00:00:00.223 114.69 114.70
7 USD/JPY 20161201 00:00:00.343 114.69 114.70
8 USD/JPY 20161201 00:00:00.347 114.69 114.70
9 USD/JPY 20161201 00:00:00.403 114.69 114.69
10 USD/JPY 20161201 00:00:00.415 114.69 114.69

The first part of the date represents the day in the format yyyymmdd and we know how to handle that
from the above discussion. The second part represents the time of the day the quote was issued and the
format is hour:minute:second (hh:mm:ss). Notice that the seconds are decimal and 00.041 represents
a fraction of a second. In this case the function as.Date() is not useful because it only takes care of
the date part, but not the time part. Two other functions are available to convert date-time strings to
date-time objects. The function strptime() and as.POSIXlt() can be used with similar functionality16

Both functions require to specify the format in terms of hour (%H), minute (%M), second (%S), and decimal
second (%OS). Notice that the date-time produced below are defaulted to the EST time zone, but this can
be easily changed with argument tz.
strptime("20161201 01:00", format="%Y%m%d %H:%M")
strptime("20161201 00:00:01", format="%Y%m%d %H:%M:%S")
strptime("20161201 00:00:00.041", format="%Y%m%d %H:%M:%OS")
as.POSIXlt("20161201 00:00:00.041", format="%Y%m%d %H:%M:%OS")

[1] "2016-12-01 01:00:00 EST"
[1] "2016-12-01 00:00:01 EST"
[1] "2016-12-01 00:00:00.041 EST"
[1] "2016-12-01 00:00:00.041 EST"

The function strptime() can also be used to define dates with no time stamp and it will produce a
POSIXt date.
date1 <- as.POSIXlt("20161201 00:00:00.041", format="%Y%m%d %H:%M:%OS")
date2 <- strptime("20161201 01:15:00.041", format="%Y%m%d %H:%M:%OS")
date2 - date1
difftime(date2, date1, unit="secs")

Time difference of 1.25 hours
Time difference of 4500 secs

We can now re-define the Date column in the data.hf frame using the strptime() function:

16While the as.POSIXlt() function produces a date-time in the format year, month, day, hour, minute, and second, the
function as.POSIXct() outputs a value that is the difference relative to a base date (January 1, 1970). I will discuss only
as.POSIXlt() since it is the one that will be used mostly in this book.
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data.hf$Date <- strptime(data.hf$Date, format="%Y%m%d %H:%M:%OS")
str(data.hf)

'data.frame': 14237744 obs. of 4 variables:
$ Pair: chr "USD/JPY" "USD/JPY" "USD/JPY" "USD/JPY" ...
$ Date: POSIXlt, format: "2016-12-01 00:00:00.041" "2016-12-01 00:00:00.042" "2016-12-01 00:00:00.186" "2016-12-01 00:00:00.188" ...
$ Bid : num 115 115 115 115 115 ...
$ Ask : num 115 115 115 115 115 ...

2.8.1 The lubridate package

There are several packages that provide functionalities to make it easier to work with dates and times.
I will discuss the lubridate package that will be used in several chapters of this book since it has an
easier syntax and provides several useful functions. The package has functions that can be used to define
a string as a date:

• ymd: for dates in the format year, month, day
• dmy: dates with day, month, year format
• mdy: when the format is month, day, year
• ymd_hm: in addition to the date the time is provided in hour and minute (the date part can be

changed to other formats)
• ymd_hms: the time format is hour, minute, and seconds

Below are some examples of dates that are parsed with these functions17:
library(lubridate)
ymd("20170717")
ymd("2017/07/17")
ymd_hm("20170717 01:00")
ydm_hms("20171707 00:00:00.041")

[1] "2017-07-17"
[1] "2017-07-17"
[1] "2017-07-17 01:00:00 UTC"
[1] "2017-07-17 00:00:00.040 UTC"

Notice that ymd("17/07/2017") would output a NA with a warning message that the parsing failed. This
is because the string date is in the format dmy() instead of ymd(). The package lubridate provides also
a series of functions that are particularly useful to extract parts of the date-time object, as shown below:
mydate <- ydm_hms("20171707 00:00:00.041")
year(mydate)

[1] 2017

month(mydate)

[1] 7

day(mydate)

[1] 17

17The default time zone in this case is UTC rather than ETC and there is a 7-hour difference between the two time zones.
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minute(mydate)

[1] 0

second(mydate)

[1] 0.041

2.9 Manipulating data using dplyr

Time series data have a major role in financial analysis and we discussed two ways to manipulate them.
The first is to define the data as a time series object (e..g, xts) that consists of embedding the time series
properties in the object. The alternative approach is to maintain the data as a data frame object and
define a date variable that keeps track of the temporal ordering of the data.

If the second route is taken, the dplyr package18 is a useful tool that can be used to manipulate data
frames. The package has the following properties:

• defines a new type of data frames, called tibble, that have some convenient features
• defines commands to manipulate data for the most frequent operations that make the task easier

and more transparent
• these commands are executed faster relative to equivalent base R commands that is particularly

useful when dealing with large datasets

To illustrate the use of the dplyr package I will use the GSPC.df data frame that was created earlier. It
is composed of 7 columns and the last 3 rows are shown below:

Date Open High Low Close Volume Adjusted
8235 2017-08-30 2446.1 2460.3 2443.8 2457.6 2633660000 2457.6
8236 2017-08-31 2462.7 2475.0 2462.7 2471.6 3348110000 2471.6
8237 2017-09-01 2474.4 2480.4 2473.8 2476.6 2710730000 2476.6

The main functions (or verbs) of the dplyr package are:

• mutate: to create new variables
• select: to select columns of the data frame
• filter: to select rows based on a criterion
• summarize: uses a function to summarize columns/variables in one value
• arrange: to order a data frame based on one or more variables

In the code below, I create new variables using the mutate function. In particular, I create the percentage
range calculated as 100 times the logarithm of the ratio of highest and lowest intra-day price, the open-
close returns, the close-to-to close return, and a few variables that extract time information from the date
using lubridate functions:
library(dplyr)
library(lubridate)

GSPC.df <- mutate(GSPC.df, range = 100 * log(High/Low),

18See the page https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html for a more detailed introduc-
tion to the package.

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
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ret.o2c = 100 * log(Close/Open),
ret.c2c = 100 * log(Adjusted / lag(Adjusted)),
year = year(Date),
month = month(Date),
wday = wday(Date, label=T, abbr=F))

Date Open High Low Close Volume Adjusted range ret.o2c ret.c2c year month wday
8233 2017-08-28 2447.3 2449.1 2439.0 2444.2 2677700000 2444.2 0.41284 -0.127157 0.048695 2017 8 Monday
8234 2017-08-29 2431.9 2449.2 2428.2 2446.3 2737580000 2446.3 0.86071 0.588741 0.084247 2017 8 Tuesday
8235 2017-08-30 2446.1 2460.3 2443.8 2457.6 2633660000 2457.6 0.67454 0.470266 0.460453 2017 8 Wednesday
8236 2017-08-31 2462.7 2475.0 2462.7 2471.6 3348110000 2471.6 0.50064 0.364790 0.570467 2017 8 Thursday
8237 2017-09-01 2474.4 2480.4 2473.8 2476.6 2710730000 2476.6 0.26361 0.086046 0.198058 2017 9 Friday

Notice that the dplyr package has its own lag() and lead() functions, as well as additional functions
that we will use in the following chapters. If we are interested in only a few variables of the data frame,
we can use the select command with arguments the data frame and the list of variables to retain:
GSPC.df1 <- dplyr::select(GSPC.df, Date, year, month, wday, range, ret.c2c)

Date year month wday range ret.c2c
8232 2017-08-25 2017 8 Friday 0.47956 0.167147
8233 2017-08-28 2017 8 Monday 0.41284 0.048695
8234 2017-08-29 2017 8 Tuesday 0.86071 0.084247
8235 2017-08-30 2017 8 Wednesday 0.67454 0.460453
8236 2017-08-31 2017 8 Thursday 0.50064 0.570467
8237 2017-09-01 2017 9 Friday 0.26361 0.198058

The filter() command is used when the objective is to subset the data frame according to the values
of some of the variables. For example, we might want to extract the data for the month of October 2008
(as done below), the days that are Wednesday, or that range is larger than 3. This is done by specifying
the logical conditions as arguments of the filter() function:
GSPC.df2 <- dplyr::filter(GSPC.df1, year == 2008, month == 10) # NB: the double equal sign

Date year month wday range ret.c2c
1 2008-10-01 2008 10 Wednesday 2.2759 -0.45543
2 2008-10-02 2008 10 Thursday 4.3324 -4.11249
3 2008-10-03 2008 10 Friday 4.9460 -1.35986

Date year month wday range ret.c2c
21 2008-10-29 2008 10 Wednesday 5.0438 -1.1141
22 2008-10-30 2008 10 Thursday 3.6722 2.5477
23 2008-10-31 2008 10 Friday 4.1261 1.5249

Instead, the function summarize() is used to apply a certain function, such as mean() or sd(), to one
or more variables in the data frame. Below, the average return and the average range is calculated for
GSPC.df2 that represents the subset of the data frame for October 2008.
summarize(GSPC.df2, av.ret = mean(ret.c2c, na.rm=T), av.range = mean(range, na.rm=T))

av.ret av.range
1 -0.80712 6.6576

All the functions above can be combined to manipulate the data to answer the question of interest and
they can also be used on groups of observations. dplyr has a function called group_by() that creates
groups of observations that satisfy one or more criterion and we can then apply the summarize() function
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on each group. Continuing with the daily S&P 500 example, we might be interested in calculating the
average return and the average range in every year in our sample. The year is thus the grouping variable
that we will use in group_by() that combined with the command summarize() used earlier produces the
answer:
temp <- group_by(GSPC.df1, year)
summarize(temp, av.ret = mean(ret.c2c, na.rm=T), av.range = mean(range, na.rm=T))

# A tibble: 33 x 3
year av.ret av.range
<dbl> <dbl> <dbl>

1 1985 0.0976091 0.78993
2 1986 0.0539351 1.12161
3 1987 0.0079337 1.78254
4 1988 0.0462060 1.22407
5 1989 0.0956298 0.95458
6 1990 -0.0268148 1.31328
7 1991 0.0923095 1.10574
8 1992 0.0171948 0.82298
9 1993 0.0269462 0.70829
10 1994 -0.0061558 0.82103
# ... with 23 more rows

The operations performed above can be streamlined using the piping operator %>% (read as then). This
is a construct that allows to write more compact and, hopefully, more readable code. The code is more
compact because it is often the case that we are not interested in storing the intermediate results (e.g.,
temp in the previous code chunk), but only to produce the table with the yearly average return and range.
The intermediate results are passed from the operation to the left of %>% to the operation on the right
or it can be referenced with a dot(.). The advantage of piping is that the sequence of commands can be
structured more transparently: first mutate the variables then select some variables then group by one or
more variables then summarize. The code below uses the %>% operator to perform the previous analysis
and then plots the average range by year using the ggplot2 package:
GSPC.df %>% mutate(range = 100 * log(High/Low),

ret.o2c = 100 * log(Close/Open),
ret.c2c = 100 * log(Adjusted / lag(Adjusted)),
year = year(Date),
month = month(Date),
day = day(Date),
wday = wday(Date, label=T, abbr=F)) %>%

dplyr::select(year, range, ret.c2c) %>%
group_by(year) %>%
summarize(av.ret = mean(ret.c2c, na.rm=T), av.range = mean(range, na.rm=T)) %>%
ggplot(., aes(year, av.range)) + geom_line(color="magenta") + theme_classic()
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The previous discussion demonstrates that the dplyr package is a very powerful tool to quickly extract
information from a dataset with benefits that reduces the loss of flexibility deriving from time series
objects. For example, let’s say that we are interested in answering the question: is volatility higher when
the Index goes down relative to when it goes up? does the relationship change over time? To answer
this question we need to break it down in the building blocks of the dplyr package: 1) first create a new
variable that takes value, e.g., up or down (or 0 vs 1) if the GSPC return was positive or negative, 2)
group the observations according to the newly created variable, 3) calculate the average range in these
two groups. The R implementation is as follows:
GSPC.df1 %>% mutate(direction = ifelse(ret.c2c > 0, "up", "down")) %>%

group_by(direction) %>%
summarize(av.range = mean(range, na.rm=T))

# A tibble: 3 x 2
direction av.range

<chr> <dbl>
1 down 1.3365
2 up 1.1730
3 <NA> 1.2094

The results indicate that volatility, measured by the intra-day range, is on average higher in days in which
the market declines relative to days in which it increases. The value for NA is due to the fact that there
is one missing value in the dataset. This can be easily eliminated by filtering out NA before creating the
direction variable with the command filter(GSPC.df1, !is.na(ret.c2c)). The function ifelse()
used above simply assigns value up to the variable direction if the condition ret.c2c > 0 is satisfied,
and otherwise it assigns the value down.

2.10 Creating functions in R

So far we discussed functions that are available in R, but one of the (many) advantages of using a
programming language is that it is possible to create functions that are taylored to the analysis you are
planning to conduct. We will illustrate this with a simple example. Earlier, we calculated the average
monthly return of the S&P 500 Index using the command mean(GSPC$ret.log, na.rm=T) that is equal
to 0.02767. We can write a function that calculates the mean and compares the results with those of the
function mean(). Since the sample mean is obtained as R̄ =

∑T
t=1 Rt/T we can write a function that
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takes a time series as input and gives the sample mean as output. We can call this function mymean and
the syntax of defining a function is as follows:
mymean <- function(Y)
{
Ybar <- sum(Y, na.rm=T) / length(Y)
return(Ybar)

}

mymean(GSPC$ret.log)

[1] 0.027665

Not surprisingly, the result is the same as the one obtained using the mean function. More generally,
a function can take several arguments, but it has to return only one outcome, which could be a list of
items. The function we defined above is quite simple and it has several limitations: 1) it does not take
into account that the series might have NAs, and 2) it does not calculate the mean of each column in case
there are several. As an exercise, modify the mymean function to accomodate for these issues.

2.11 Loops in R

A loop consists of a set of commands that we are interested to repeat a pre-specified number of times
and to store the results for further analysis. There are several types of loops, with the for loop probably
the most popular. The syntax in R to implement a for loop is as follows:
for (i in 1:N)
{

## write your commands here
}

where i is an indicator and N is the number of times the loop is repeated. As an example, we can write
a function that contains a loop to calculate the sum of a variable and compare the results to the sum()
function provided in R. This function could be written as follows:
mysum <- function(Y)
{
N = length(Y) # define N as the number of elements of Y
sumY = 0 # initialize the variable that will store the sum of Y

for (i in 1:N)
{

if (!is.na(Y[i])) sumY = sumY + as.numeric(Y[i]) # current sum is equal to previous sum
} # plus the i-th value of Y
return(sumY) # as.numeric(): makes sure to transform

} # from other classes to a number

c(sum(GSPC$ret.log, na.rm=T), mysum(GSPC$ret.log))

[1] 192.94 192.94
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Notice that to define the mysum() function we only use the basic + operator and the for loop. This is
just a simple illustration of how the for loop can be used to produce functions that perform a certain
operation on the data. Let’s consider another example of the use of the for loop that demonstrates the
validity of the Central Limit Theorem (CLT). We are going to do this by simulation, which means that
we simulate data and calculate some statistic of interest and repeat these operations a large number of
times. In particular, we want to demonstrate that, no matter how the data are distributed, the sample
mean is normally distributed with mean the population mean and variance given by σ2/N , where σ2 is
the population variance and N is the sample size. We assume that the population distribution is N(0, 4)
and we want to repeat a large number of times the following operations:

1. Generate a sample of length N
2. Calculate the sample mean
3. Repeat 1-2 S times

Every statistical package provides functions to simulate data from a certain distribution. The function
rnorm( N, mu, sigma) simulate N observations from the normal distribution with mean mu and standard
deviation sigma whilst rt(N, df, ncp) generates a sample of length N from the t distribution with df
degrees-of-freedom and non-centrality parameter ncp. The code to perform this simulation is as follows:
S = 1000 # set the number of simulations
N = 1000 # set the length of the sample
mu = 0 # population mean
sigma = 2 # population standard deviation

Ybar = vector('numeric', S) # create an empty vector of S elements
# to store the t-stat of each simulation

for (i in 1:S)
{
Y = rnorm(N, mu, sigma) # Generate a sample of length N
Ybar[i] = mean(Y) # store the t-stat

}
c(mean(Ybar), sd(Ybar))

[1] 0.0013602 0.0637967

The object Ybar contains 1000 elements each representing the sample mean of a random sample of
length 1000 drawn from a certain distribution. We expect that these values are distributed as a normal
distribution with mean equal to 0 (the population mean) and standard deviation 2/31.62278 = 0.06325.
We can assess this by plotting the histogram of Ybar and overlap it with the distribution of the sample
mean. The graph below shows that the two distribution seem very close to each other. This is confirmed
by the fact that the mean of Ybar and its standard deviation are both very close to their expected values.
To evaluate the normality of the distribution, we can estimate the skewness and kurtosis of store which
we expect to be close to zero to indicate normality. These values are -0.09 and 0.1 which can be considered
close enough to zero to conclude that Ybar is normally distributed.
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What would happen if we generate samples from a t instead of a normal distribution? For a small number
of degrees-of-freedom the t distribution has fatter tails than the normal, but the CLT is still valid and we
should expect results similar to the previous ones. We can run the same code as above, but replace the
line Y = rnorm(N, mu, sigma) with Y = rt(N, df) with df=4. The plot of the histogram and normal
distribution (with σ2 = df/(df − 2)) below shows that the empirical distribution of Ybar closely tracks
the asymptotic distribution of the sample mean.
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Table 2.1: R functions used in this Chapter.

Ad() day() getSymbols() minute() second() theme_bw()
apply.monthly() density() ggplot() month() select() theme_classic()
apply.weekly() diff() grid.arrange() mutate() start() to.monthly()

as.Date() difftime() group_by() names() str() to.weekly()
as.POSIXlt() end() head() new.env() strptime() window()
basicStats() filter() hist() periodicity() subset() write.csv()

box() fread() labs() plot() sum() xts()
class() geom_density() lag() qplot() summarize() ydm_hms()
cor() geom_histogram() length() Quandl() summary() year()
cov() geom_line() lines() read_csv() Sys.time() ymd_hm()

data.frame() geom_smooth() merge() read.csv() tail() ymd()

Table 2.2: R packages used in this Chapter.

data.table fBasics gridExtra quandl readr
dplyr ggplot2 lubridate quantmod NA

Exercises

Create a Rmarkdown file (Rmd) in Rstudio and answer each question in a separate section. To get started
with Rmarkdown visit this page. The advantage of using Rmarkdown is that you can embed in the same
document the R code, the output of your code, and your discussion and comments. This saves a significant
amount of time relative to having to copy and paste tables and graphs from R to a word processor.

1. Perform the analysis in exercise 1 of Chapter 1 using R instead of Excel. In addition to the questions
in the exercise, answer also the following question: which software between Excel and R makes the
analysis easier, more transparent, more scalable, and more fun?

2. Download data from Yahoo Finance for SPY (SPDR S&P 500 ETF Trust) starting in 1995-01-01
at the daily frequency. Use the dplyr package to answer the following questions:

• Is the daily average return and volatility (measured by the intra-day range), higher on Monday
relative to Friday?

• Which is the most volatile month of the year?
• Is a large drop or a large increase in SPY, e.g. larger than 3% in absolute value, followed by a

large return the following day? what about volatility?

3. Download data for GLD (SPDR Gold Trust ETF) and SPY (SPDR S&P 500 ETF) at the daily
frequency starting in 2004-12-01. Answer the following questions:

• Create the daily percentage returns and use the ggplot2 package to do a scatter plot of the
two asset returns. Does the graph suggest that the two assets co-move?

http://rmarkdown.rstudio.com/
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• Add a regression line to the previous graph with command geom_smooth(metod="lm") and
discuss if it confirms your previous discussion.

• Estimate the descriptive statistics for the two assets with command basicStats() from pack-
age fBasics; discuss the results for each asset and comparing the statistical properties of the
two assets

• Calculate the correlation coefficient between the two assets; comment on the magnitude of the
correlation coefficient.

• Use dplyr to estimate the correlation coefficient every year (instead of the full sample as in
the previous question). Is the coefficient varying significantly from year to year? Use ggplot2
to plot the average correlation over time.

4. Import the TrueFX file that you used in exercise 4 of the previous Chapter. Answer the following
questions:

• Import the file using the fread() from the data.table package and the read_csv() from the
readr package:

– calculate the time that it took to load the file and compare the results
– print the structure of the file loaded with the two functions and compare the types of the

variables (in particular, the date-time variable)
• Calculate the dimension of the data frame
• Use dplyr to calculate the following quantities:

– total number of quotes in each day of the sample and plot it over time
– the intra-day range determined by the log-difference of the highest and lowest price; do a

time series plot
– create a minutes variable using the minute() function of lubridate; use group_by()

and summarize() to create a price at the 1 minute interval by taking the last observation
within each minute. Use ggplot2 to do a time series plot of the FX rate at the 1 minute
interval.
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Chapter 3

Linear Regression Model

Are financial returns predictable? This question has received considerable attention in academic research
and in the finance profession. The mainstream theory in financial economics is that markets are efficient
and that prices reflect all available information. If this theory is correct, current values of economic and
financial variables should not be useful in predicting future returns. The theory can thus be empirically
tested by evaluating if the data show evidence of a relationship between future returns and current value
of predictive variables, e.g. the dividend-price ratio. In practice, the fact that many fund managers
follow an “active” strategy of “outperforming the market” seems at odd with the theory that prices are
unpredictable and that investors should only follow a “passive” strategy.

There is an extensive literature in financial economics trying to answer this question. A recent article by
Welch and Goyal (2008) is a comprehensive evaluation of the many variables that were found to predict
financial returns. The conclusion of the article is that there is some evidence, although not very strong,
that returns are predictable. However, the predictability is hardly useful when trying to forecast returns
in real-time1. The authors provide the data used in their paper and also an updated version to 2015 at
this link. The dataset is provided at the monthly, quarterly, and annual frequency and contains several
variables described in detail in the article. For now, we are only interested in using D12 (the dividend), the
Rfree (riskfree rate proxied by the 3-month T-bill rate), and the CRSP_SPvw that represents the return
of the CRSP value-weighted Index. The code below downloads and reads the Excel file and then creates
new variables using the dplyr package. The new variables created are DP (the percentage dividend-price
ratio) and ep_crsp that is the equity premium defined as the difference between next year’s percentage
return on the CRSP value-weighted Index and the riskfree rate. Finally, a scatter plot of the equity
premium against the dividend-price ratio at the annual frequency is produced in Figure 3.1. You should
be able to reproduce the graph with the code below.
library(downloader) # package to download files
library(readxl) # package to read xlsx files
library(dplyr)

1We will spend more time on explaining why there could be a difference between in-sample results and out-of-sample
(real-time). For now know this: in-sample means that we calculate the goodness of the predictive relationship on the same
data that we use to estimate the parameters, while out-of-sample (or real-time if you prefer) means that we estimate the
parameters of the relationship on past data but calculate the goodness of the relationship on future data.
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Figure 3.1: Annual observations of the dividend-price (DP) ratio and the equity premium for the CRSP
value weighted Index (calculated as the difference between the next year return on the CRSP Value
Weighted Index and the riskfree rate).

library(lubridate)

# link to the page of Amit Goyal with the data up to 2015; the file is an Excel xlsx file
url <- "http://www.hec.unil.ch/agoyal/docs/PredictorData2015.xlsx"
file <- download(url, destfile="goyal_welch.xlsx")
data <- read_excel("goyal_welch.xlsx", sheet="Annual", na = "NaN")

data <- data %>% mutate(date = ymd(paste(yyyy,"-01-01",sep="")),
DP = 100 * D12 / Index,
ep_crsp = 100 * (lead(CRSP_SPvw - Rfree, 1, order_by=yyyy))) %>%

dplyr::filter(yyyy >= 1926, yyyy < 2015)

library(ggplot2)
ep.plot <- ggplot(data, aes(DP,ep_crsp)) + geom_point() + theme_bw() + labs(caption=url)
ep.plot

So: are returns predictable? It seems that years when the DP ratio was high (e.g., higher than 5%) were
followed by years with large positive returns. However, also low values of the DP ratio were followed by
years with moderately positive returns, but also some negative returns. It seems that, on average, future
returns are higher following years with higher DP ratio. The economic logic supporting this relationship
is that a high value of the DP makes the asset attractive to investors that will buy more and put upward
pressure on the price that is in denominator of the ratio. Sometimes, scatter plots are difficult to interpret
and to extract a clear answer about the relationship between two variables. In these cases, it is useful
to draw a regression line through the points. The regression line represents the average equity premium
that is expected for a certain value of the dividend-price ratio and can be added to the previous graph
with the geom_smooth() function as shown below:
ep.plot + geom_smooth(method="lm", se=FALSE, color="orange")

The regression line is upward sloping which means that increasing values of the dividend-price ratio
predict higher returns in the following years. The regression line is equal to -0.04 + 2.16 * DP so that if
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Figure 3.2: Scatter plot of the Dividend-to-Price ratio and the equity premium with the regression line
added to the plot.

the DP ratio is equal to 2.5% the model predicts that next year the equity premium will be 5.37% and if
the ratio is equal to 5% then the premium is expected to be equal to 10.78%2. The fact that the data
points are quite distant from the regression line indicates that the DP has some explanatory power for the
equity premium, but we do not expect the predictions to be very precise. For example, if you consider the
years in which the DP ratio was close to 5%, there have been years in which the premium has been -10%
and others as high as 38% despite the regression line predicted 10.78%. Hence, the regression line seems
to account for some dependence between the dividend-price ratio and the equity premium, although there
is still large uncertainty. Also, it seems a bit puzzling the behavior of the DP below 2.5%. In the years
in which the DP was extremely low the equity premium was actually mostly positive between 0 and 25%
while there are only a few years with a negative premium.

A scatter plot is a very useful way to visually investigate the relationship between two variables. However,
it eliminates the time series characteristics of these variables that could reveal important features in the
data. Figure 3.3 shows the dividend-price ratio and the equity premium over time (starting in 1926).
plot1 <- ggplot(data, aes(yyyy, DP)) + geom_line() + theme_bw() + labs(x="", y="DP") +

geom_hline(yintercept = 5, color="violet") + geom_hline(yintercept = 2.5, color="violet")
plot2 <- ggplot(data, aes(yyyy, ep_crsp)) + geom_line() + theme_bw() +

geom_hline(yintercept = 0, color="tomato3") + labs(x="", y="Equity Premium")
grid.arrange(plot1, plot2)

Let’s consider first the DP ratio. The ratio was larger than 5% mostly between the mid-1930s and the
mid-1950s, fluctuated in the range 2.5-5% until approximately 1995, and since then it has been below
2.5% except for 2008. Notice how values of the ratio below 2.5% never occured before 1995 and were
associated, in most cases, with positive premiums and larger than expected based on the regression line.
While we see a clear decline in the DP ratio in the latest part of the sample, such a trend is not observable
in the equity premium that oscillated approximately between plus/minus 25% throughout the sample.
This raises several questions about the relationship between the DP ratio and future returns:

• will the DP ratio ever go back to 5% or more?
• is the historical relationship between the DP ratio and the equity premium a good and reliable

2A rule-of-thumb emerging from this model is that next year returns are expected to be twice the end-of-year DP ratio.
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Figure 3.3: Time series of the DP ratio (top) and the equity premium (bottom) from 1926 to 2015.

guidance for the future?
• in other words, did the relationship change over time?

The goal of this Chapter is to review the Linear Regression Model (LRM) as the basic framework to
investigate the relationship between variables. The goal is not to provide a comprehesive review, but
rather to discuss the important concepts and discuss several applications to financial data. The most
important task in data analysis is to be aware of the many problems that can arise in empirical work that
can distort the analysis, such as the effect of outliers and of omitted variables. This Chapter is meant to
provide an intentionally light review which will necessarily require that the reader consults more detailed
and precise treatments of the LRM as in Stock and Watson (2010) and Wooldridge (2015).

3.1 LRM with one independent variable

The LRM assumes that there is a relationship between a variable Y observed at time t, denoted Yt, and
another variable X observed in the same time period, denoted Xt, and that the relationship is linear,
that is,

Yt = β0 + β1 ∗ Xt + ϵt

where Yt is called the dependent variable, Xt is the independent variable, β0 and β1 are parameters, and
ϵt is the error term. Typically, we use subscript t when the variables are observed over time (time series
data) and subscript i when they vary across different individuals, firms, or countries at one point in time
(cross-sectional or longitudinal data). The aim of the LRM is to explain the variation over time or across
units of the dependent variable Y based on the variation of the independent variable X: high values of Y

are explained by high (or low) values of X, depending on the parameter β1. For example, in the case of
the equity premium our goal is to understand why in some years the equity premium is positive and large
while in other years it is small positive or negative. Another example is the cross-section of stocks in a
certain period (month or quarter) and the aim in this case is to understand the characteristics of stocks
that drive their future performance. We estimate the LRM by Ordinary Least Squares (OLS) which is
an estimation method that determines the parameter values such that they minimize the sum of squared
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residuals. For the LRM we have analytical formulas for the OLS coefficient estimates. The estimate of
the slope coefficient, β̂1, is given by

β̂1 = σ̂X,Y

σ̂2
X

= ρ̂X,Y
σ̂Y

σ̂X

where σ̂2
X and σ̂2

Y represent the sample variances of the two variables, and σ̂X,Y and ρ̂X,Y are the sample
covariance and the correlation of X and Y , respectively. The sample intercept, β̂0, is given by

β̂0 = Ȳ − β̂1 ∗ X̄

where X̄ and Ȳ represent the sample mean of Xt and Yt. Let’s make the formulas operative using
the dataset discussed in the introduction to this chapter. The dependent variable is actually Yt+1 in
this application and represents the annual equity premium (ep_crsp) in the following year, while the
independent variable Xt is the DP, the dividend-price ratio for the current year. To calculate the estimate
of the slope coefficient β1 we need to estimate the covariance of the premium and the ratio as well as
the variance of PD. We discussed already how to estimate these statistical quantities in R in the previous
chapter using the cov() and var() commands:
cov(data$ep_crsp, data$DP) / var(data$DP)

[1] 2.1637

The interpretation of the slope estimate is that if the DP changes by 1% then we expect the equity premium
in the following year to change by 2.164%. The alternative way to calculate β̂1 is using the correlation
coefficient and the ratio of the standard deviations of the two assets:
cor(data$ep_crsp, data$DP) * sd(data$ep_crsp) / sd(data$DP)

[1] 2.1637

This formula shows the relationship between the correlation and the slope coefficients when the LRM has
only one independent variables. The correlation between ep_crsp and DP in the sample is 0.184 and it is
scaled up by 11.76 that represents the ratio of the standard deviations of the dependent and independent
variables. Notice that if we had standardized both X and Y to have standard deviation equal to 1 then
the correlation coefficient would be equal to the slope coefficient. Once the slope parameter is estimated,
we can then calculate the sample intercept as follows:
mean(data$ep_crsp) - beta1 * mean(data$DP)

[1] -0.035942

The OLS formulas for the estimators of the intercept and slope coefficients and their calculation are
programmed in all statistical and econometric software, and even Microsoft Excel can provide you with the
calculations. Still, it is important to understand what these numbers represent and how to relate to other
quantities that we routinely use to measure dependence. The R function lm() (for linear model) estimates
the LRM automatically and provides all accessory information that is needed to conduct inference and
evaluate the goodness of the model. The following example estimates the LRM with the equity premium
as the dependent variable and the DP ratio as the independent:
# two equivalent ways of estimating a linear model
fit <- lm(data$ep_crsp ~ data$DP)
fit <- lm(ep_crsp ~ DP, data=data)
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Call:
lm(formula = ep_crsp ~ DP, data = data)

Coefficients:
(Intercept) DP

-0.0359 2.1637

The fit object produces only the coefficient estimates and a more detailed report of the relevant statistics
can be obtained using the function summary(fit) as shown below:
summary(fit)

Call:
lm(formula = ep_crsp ~ DP, data = data)

Residuals:
Min 1Q Median 3Q Max

-61.72 -13.26 2.53 13.34 38.89

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0359 5.2297 -0.01 0.995
DP 2.1637 1.2393 1.75 0.084 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20 on 87 degrees of freedom
Multiple R-squared: 0.0339, Adjusted R-squared: 0.0227
F-statistic: 3.05 on 1 and 87 DF, p-value: 0.0844

The summary() of the lm object provides the statistical quantities that are used in testing hypothesis and
understand the relevance of the model in explaining the data. The information provided is3:

• Estimate: the OLS estimates of the coefficients in the LRM
• Std. Error: the standard errors represent the standard deviations of the estimates and measure the

uncertainty in the sample about the coefficient estimates
• t value: the ratio of the estimate and the standard error of a coefficient; it represents the t-statistic

for the null hypothesis that the coefficient is equal to zero, that is, H0 : βi = 0 (i=0,1). In large
samples the t-statistic has a standard normal distribution and the two-sided critical values at 10,
5, and 1% are 1.64, 1.96, and 2.58, respectively. The null hypothesis that a coefficient is equal to
zero against the alternative that is different from zero is rejected when the absolute value of the
t-statistic is larger than critical values.

• Pr(>|t|): the p-value represents the probability that the standard normal distribution takes a value
larger (in absolute value) than the t-statistic. The null H0 : βi = 0 is rejected in favor of H1 : βi ̸= 0
when the p-value is smaller than the significance level (1, 5, 10%) .

• Residual standard error: the variance of the residuals ϵ̂t = Yt − β̂0 − β̂1 ∗ Xt.
• R2: a measure of goodness-of-fit that represents the percentage of the variance of the dependent

variable that is explained by the model, while 100−R2% remains unexplained. The measure ranges
3The quantities discussed below should sound familiar and reflect concepts that you understand already. If they are not

familiar, please review a introductory econometrics textbook for a more detailed treatment.
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from 0 to 1 with 0 meaning that the model is totally irrelevant to explain the dependent variable
and 1 meaning that it completely explain it without errors.

• Adjusted R2: this quantity penalizes the R2 measure for the number of parameters that are included
in the regression. This is because R2 does not decrease when additional independent variables are
included in the model. Models with highest adjusted R2 are preferred.

• F-statistic: tests the null hypothesis that all slope parameters are equal to zero against the alter-
native that at least one is different from zero. The critical value of the F-statistic depends on the
number of observations and the number of variables included in the regression.

The regression results show that an increase of the DP ratio by 1% (% is the unit of the DP variable) leads
to an increase of future returns by 2.16% and confirms that higher dividend-price ratio predict higher
future returns. The coefficient of the DP ratio has a t-statistic of 1.75 and a p-value of 0.08 which means
that it is statistically significant at 10% but not at 5%. Hence, we do find evidence indicating that the
dividend-price ratio is a significant predictor of future returns, although only at 10% significance level.
The goodness-of-fit measure R2 is equal to 0.034 or 3.4% which is quite close to its lower bound of zero
and indicates that the DP ratio has small predictive power for the equity premium. We thus find that
returns are predictable, although the predictive content of the variable we used (the dividend-price ratio)
is small. Maybe there could be other more powerful predictors of the equity premium, and the search
continues.

Based on the coefficient estimates, we can then calculate the fitted values and the residuals of the regression
model. The fitted values are calculated as β̂0+β̂1∗DPt and represent the prediction of the equity premium
in year t+1 based on the DP ratio of year t. We can denote the fitted values (or expected or predicted) as
E(EPt+1) where E(·) is the expectation and EPt+1 represents the equity premium in the following year.
The residuals are the estimated errors and are obtained by subtracting the predicted equity premium to
the value that actually realized, that is, ϵ̂t+1 = EPt+1 − E(EPt+1). Figure 3.4 shows the time series of
the equity premium (orange line) and the forecast from the model (red line), while the bottom graph
shows the residuals that represent the distance between the realized and fitted equity premium in the top
graph.
plot1 <- ggplot(data) + geom_line(aes(yyyy, ep_crsp), color="orange") +

geom_line(aes(yyyy, fit$fitted.values), color="red") +
theme_bw() + labs(x="", y="Premium & Fitted")

plot2 <- ggplot(data) + geom_line(aes(yyyy, fit$residuals), color="royalblue2") +
theme_bw() + labs(x="",y="Residuals") +
geom_hline(yintercept=0, color="slategray4")

grid.arrange(plot1, plot2)

Let’s first look at the top graph. The red line (predicted equity premium) seems quite flat relative to
the orange line (realized equity premium). The goal of the model is to produce predictions that are as
close as possible to the realized values. Unfortunately, in this case it seems that the predictions of the
model are not very informative about the following year equity premium. This makes visually clear the
implications of a low R2. If the R2 was equal to zero the red line would have been flat and, at the other
extreme, if R2 was equal to one then the red line would overlap with the orange line4. In this case, the

4R2 equal to 1 means that the sum of squared errors is equal to zero that is only possible when the fitted equity premium
is equal to the realized equity premium.
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Figure 3.4: Time series of the realized and predicted equity premium (top) and the residuals obtained as
the difference between the realized and predicted equity premium (bottom).

predicted equity premium varies over time in response to changes in the DP ratio, but hardly enough to
keep track of the changes of the realized equity premium in any useful way.

3.2 Robust standard errors

The standard errors calculated by the lm() function are based on the assumption that the errors ϵt

have constant variance and, for time series data, that they are independent over time. In practice, both
assumptions might fail. The variance or standard deviation of the errors might vary over time or across
individuals and errors might be dependent and correlated over time. For example, an indication of de-
pendence in the error is when positive errors are more (less) likely to be followed by positive (negative)
errors as opposed to be equally likely. Calculating the standard errors assuming homogeneity and inde-
pendence when in fact the errors are heteroskedastic and/or dependent is that, typically, the standard
errors are smaller than they should be to make correct inference. The solution is to correct the standard
errors using Heteroskeasticity Corrected (HC) standard errors in cross-sectional regressions and using
Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors when dealing with time series
data as proposed by Newey and West (1987). A practical rule is use corrected standard errors by default
and in case the residuals are homoskedastic and independent over time there is only a small loss of pre-
cision in small samples. The code below shows how to calculate Newey-West HAC standard errors for a
lm object.
library(sandwich) # function NeweyWest() to calculates HAC standard errors
library(lmtest) # function coeftest() produces a table of results with HAC s.e.
fit <- lm(ep_crsp ~ DP, data=data)
summary(fit)$coefficients
coeftest(fit, df = Inf, vcov = NeweyWest(fit, prewhite = FALSE))
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.036 5.2 -0.0069 0.995
DP 2.164 1.2 1.7459 0.084

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0359 4.9993 -0.01 0.99
DP 2.1637 1.3173 1.64 0.10

Notice that:

• The coefficient estimates are the same since they are not biased by the presence of heteroskedasticity
and auto-correlation in the errors

• The standard error for DP and the intercept increase slightly. This implies that the t-statistic for
DP decreases from 1.75 to 1.64 and the p-value increases from 0.08 to 0.1. The DP is still significant
at 10% level but it becomes a even more marginal case.

As mentioned earlier, when dealing with time series data it is good practice to estimate HAC standard
errors by default which is what we will do in the rest of this book.

3.3 Functional forms

In the example above we considered the case of a linear relationship between the independent variable X

and the dependent variable Y . However, there are situations in which the relationship between X and Y

might not be well-explained by a linear model. This can happen, e.g., when the effect of changes of X

on the dependent variable Y depends on the level of X. In this Section, we discuss two functional forms
that are relevant in financial applications.

One functional form that can be used to account for nonlinearities in the relationship between X and
Y is the quadratic model, which simply consists of adding the square of the independent variable as an
additional regressor. The Quadratic Regression Model is given by

Yt = β0 + β1 ∗ Xt + β2 ∗ X2
t + ϵt

that, relative to the linear model, adds some curvature to the relationship through the quadratic term.
The model can still be estimated by OLS and the expected effect of a one unit increase in X is now given
by β1 +2β2Xt. Hence, the effect on Y of changes in X is a function of the level of the independent variable
X, while in the linear model the effect is β1 no matter the value of X. Polynomials of higher order can
also be used, but care needs to be taken since the additional powers of Xt are strongly correlated with
Xt and X2

t . The cubic regression model is thus given by:

Yt = β0 + β1 ∗ Xt + β2 ∗ X2
t + +β3 ∗ X3

t + ϵt

The second type of nonlinearity that can be easily introduced in the LRM assumes that the slope coefficient
of X is different below or above a certain threshold value of X. For example, if Xt represents the market
return we might want to evaluate if there is a different (linear) relationship between the stock and the
market return when the market return is, e.g., below or above the mean/median. We can define two new
variables as Xt ∗ I(Xt ≥ m) and $ X_t * I(X_t < m)$, where I(A) is the indicator function which takes
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value 1 if the event A is true and zero otherwise, and m is a threshold value to define the variable above
and below. The model is given by:

Yt = β0 + β1Xt ∗ I(Xt ≥ m) + β2Xt ∗ I(Xt < m) + ϵt

where the coefficients β1 and β2 represent the effect on the dependent variable of a unit change in Xt

when Xt is larger or smaller than the value m. Another way of specifying this model is by including the
regressor Xt and only one of the two interaction effects:

Yt = γ0 + γ1Xt + γ2Xt ∗ I(Xt ≥ m) + ϵt

In this case the coefficient γ2 represents the differential effect of the variable X when it is below or above
the value m. Testing the null hypothesis that γ2 = 0 represents a way to evaluate whether there is a
nonlinear relationship between the two variables.

3.3.1 Application: Are hedge fund returns nonlinear?

An interesting application of nonlinear functional forms is to model hedge fund returns. As opposed to
mutual funds that mostly hold long positions and make limited use of financial derivatives and leverage,
hedge funds make extensive use of these instruments to hedge downside risk and boost their returns. This
potentially produces a nonlinear response to changes in market returns which cannot be captured by a
linear model. As a simple example, assume that a hedge fund holds a portfolio composed of one call option
on a certain stock. The performance/payoff will obviously have a nonlinear relationship to the price of the
underlying asset and will be better approximated by either of the functional forms discussed above. We
can empirically investigate this issue using the Credit Suisse Hedge Fund Indexes5 that provide the overall
and strategy-specific performance of a portfolio of hedge funds. Indexes are available for the following
strategies: convertible arbitrage, dedicated short bias, equity market neutral, event driven, global macro
and long-short equity among others. Since individual hedge fund returns data are proprietary, we will
use these Indexes that could be interpreted as a sort of fund-of-funds of the overall universe or for specific
strategies of hedge funds.

The file hedgefunds.csv contains the returns of 14 Credit Suisse Hedge Fund Indexes (the HF index and
13 strategies indexes) starting in January 1993 at the monthly frequency. Figure 3.5 shows the change
in NAV for these indexes, with some strategies performing extremely well (e.g., global macro) and other
performing rather poorly (e.g., dedicated short bias). All strategies seem to have experienced a decline
during the 2008-2009 recession, although some strategies were affected to a lesser extent.
hfret <- read_csv('hedgefunds.csv')
hfret$date <- as.yearmon(mdy(hfret$date)) # format the date to match the format of factor
sp500 <- dplyr::select(mydata, date, GSPC) # merge with S&P 500
sp500$GSPC <- 100 * sp500$GSPC / sp500$GSPC[sp500$date == "Dec 1993"] # make Dec 1993 equal to 100
hfret <- inner_join(hfret, sp500, by="date") # join the hfret and sp500 in one data frame
# reorganize the data in e columns: date, Strategy, NAV (makes it easier to use ggplot2)
hfret <- arrange(hfret, date) %>% tidyr::gather(Strategy, NAV, -date)

5The data is available at the website http://www.hedgeindex.com upon registration.

http://www.hedgeindex.com
http://www.hedgeindex.com
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Figure 3.5: Net Asset Value (NAV) of the Credit Suisse HF Indexes starting in December 1993. In this
graph the NAV of all strategies is standardized at 100 in December 1993.

ggplot(hfret, aes(date, NAV, color=Strategy)) +
geom_line() + theme_bw() + labs(x="", caption="Credit Suisse HF Indexes") +
theme(legend.text=element_text(size=7)) + guides(col = guide_legend(nrow = 8, byrow = TRUE))

Alternatively, we can evaluate and compare the descriptive statistics of the strategies by calculating
the mean, standard deviation, skewness, and kurtosis for the monthly returns defined as the percentage
change of the NAV. In the code below I use the skewness and kurtosis functions from the e1071 package
and format the results as a table using the kable function from the knitr package.
hfret <- hfret %>%

group_by(Strategy) %>%
mutate(RET = 100 * log(NAV / lag(NAV))) %>%
dplyr::filter(!is.na(RET))

strategy.table <-hfret %>%
group_by(Strategy) %>%
summarize(AV = mean(RET),

SD = sd(RET),
SKEW = e1071::skewness(RET),
KURT = e1071::kurtosis(RET),
MIN = min(RET), MAX = max(RET))

knitr::kable(strategy.table, digits=3, caption="Summary statistics for the HF strategy returns
from the Credit Suisse Hedge Fund Indexes starting in December 1993.")

Some facts that emerge from this table:
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Table 3.1: Summary statistics for the HF strategy returns from the Credit Suisse Hedge Fund Indexes
starting in December 1993.

Strategy AV SD SKEW KURT MIN MAX
Convertible Arbitrage 0.54 1.9 -3.003 20.36 -13.5 5.6
Dedicated Short Bias -0.49 4.6 0.521 0.81 -12.0 20.5
Emerging Markets 0.55 4.0 -1.255 8.39 -26.2 15.2
Equity Market Neutral 0.34 3.3 -13.735 210.97 -51.8 3.6
Event Driven 0.65 1.8 -2.216 11.16 -12.5 4.1
Event Driven Distressed 0.74 1.8 -2.281 13.15 -13.3 4.1
Event Driven Multi-Strategy 0.61 1.9 -1.768 7.78 -12.2 4.7
Event Driven Risk Arbitrage 0.47 1.1 -0.990 4.87 -6.4 3.7
Fixed Income Arbitrage 0.42 1.6 -5.057 40.80 -15.1 4.2
Global Macro 0.80 2.6 -0.126 4.82 -12.3 10.1
GSPC 0.57 4.3 -0.840 1.66 -18.6 10.2
Hedge Fund Index 0.62 2.0 -0.263 3.15 -7.8 8.2
Long/Short Equity 0.68 2.6 -0.201 3.83 -12.1 12.2
Managed Futures 0.39 3.3 -0.046 -0.15 -9.8 9.5
Multi-Strategy 0.62 1.4 -1.838 7.44 -7.6 4.2

• The best performing strategy is Global Macro with an average return of 0.8% monthly and the
worst performing strategy is Dedicated Short Bias that realized an average return of -0.49%. As
a comparison, the S&P 500 Index in the same period had a average return of 0.57% and the Hedge
Fund Index of 0.62%

• In terms of volatility, the standard deviation of the S&P 500 in this period was 4.28% monthly and
the Hedge Fund Index of 2. The least volatile HF strategy was Event Driven Risk Arbitrage
(1.14%) and the most volatile was Dedicated Short Bias (4.65%)

• Overall, it seems that most strategies provide a better risk-return ratio relative to investing in the
S&P 500 by providing higher returns per unit of volatility.

• Most strategies have negative skewness and positive excess kurtosis that indicate that the distri-
bution of returns are left-skewed and fat tailed. This could be due to large negative returns due
to significant declines in NAV. Some values of the kurtosis are quite extreme as in the case of the
Equity Market Neutral strategy with a value of 210.97. This is an indication that some outliers
might have occured in the sample and that further examination is required as discussed later in the
Chapter. The column MIN and MAX show that Equity Market Neutral experienced a loss of 51.84%
in one month while the largest gain was 3.59%. In analyzing this dataset we will have to consider
carefully whether these extreme observations might be considered outliers and have an effect on
our analysis.

Are the HF returns sensitive to movements in the U.S. equity market? To evaluate graphically this
question we can do a scatter plot of the HF Index return against the S&P 500. Figure 3.6 shows that
there seems to be positive correlation between these two variables, although the most striking feature of
the plot is the difference in scale between the x- and y-axis: the HF returns range between ±8% while
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Figure 3.6: Scatter plot of the monthly returns of the SP 500 Index and the CSHedge Fund Index starting
in December 1993.

the equity index between −20% and 12%. The standard deviation of the HF index is 2% compared to
4.28% for the S&P 500 Index which shows that hedge funds provide a hedge against large movements
in markets. Notice that the code to make Figure 3.6 keeps the column names to be the strategy names
given by Credit Suisse. This is mostly driven by the intent to make the code easier to read and more
transparent. In practice, it is more convenient to rename the columns to some shorter and faster to type
names (e.g., HFI). Below is the code to produce Figure 3.6.
hfret1 <- hfret %>% dplyr::select(-NAV) %>% tidyr::spread(Strategy, RET)

ggplot(hfret1, aes(GSPC, `Hedge Fund Index`)) + geom_point() +
geom_vline(xintercept=0, color="mediumorchid3") +
geom_hline(yintercept=0, color="mediumorchid3") +
labs(caption = "Credit Suisse, Yahoo")

Before introducing non-linearities, let’s estimate a linear model in which the HF index return is explained
by the S&P 500 return. The results below show the existence of a statistically significant relationship
between the two returns. The exposure of the HF return to S&P 500 fluctuations is 0.27 which means
that if the market return changes by ±1% then we expect the fund return to change by ± 0.27%. The R2

of the regression is 0.33, which is not very high for this type of regressions. A (relatively) low R2 in this
case is actually good news for hedge funds since most strategies promise to provide low (if none) exposure
to market fluctuation. If this is case then a low goodness-of-fit statistic is good news. We can add the
fitted linear relationship given by 0.47 + 0.27RSP 500

t to the previous scatter plot to have a graphical
understanding of the LRM:
fitlin <- lm( `Hedge Fund Index` ~ GSPC, data=hfret1)
coeftest(fitlin, vcov=NeweyWest(fitlin, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4695 0.1162 4.04 7.0e-05 ***
GSPC 0.2687 0.0327 8.23 7.9e-15 ***
---
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Figure 3.7: Scatter plot of the SP 500 and the HF Index together with the regression line obtained from
the fitlin object.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ggplot(hfret1, aes(GSPC, `Hedge Fund Index`)) +
geom_point(color="coral4", alpha=0.4) +
geom_abline(intercept = coef(fitlin)[1], slope = coef(fitlin)[2], color="coral1") +
theme_classic() + labs(caption = "Credit Suisse, Yahoo")

To estimate a quadratic model we need to add the quadratic term to the linear regression. This can be
done adding the term I(GSPCˆ2) where I() is used to add transformations of variables in the formula of
the lm() function:
fitquad <- lm(`Hedge Fund Index` ~ GSPC + I(GSPC^2), data=hfret1)
coeftest(fitquad, vcov=NeweyWest(fitquad, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.61540 0.11323 5.44 1.2e-07 ***
GSPC 0.25064 0.03540 7.08 1.2e-11 ***
I(GSPC^2) -0.00729 0.00423 -1.73 0.086 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since the coefficient of the square term is statistically significant at 10% level we conclude that a nonlinear
form is a better model to explain the relationship between the market and fund returns. In this case, we
find that the p-value for the null hypothesis that the coefficient of the square market return is equal to
zero is 0.09 (or 8.6%) which is smaller than 0.10 (or 10%) and we thus conclude that there is significant
evidence of nonlinearity in the relationship between the HF and the market return. The effect of a ± 1%
change in the S&P 500 is given by 0.25 + (-0.01)RSP 500

t .The fact that the coefficient of the quadratic
term is negative implies that the parabola 0.62 + 0.25RSP 500

t + -0.01(RSP 500
t )2 will lay below the line

0.62 + 0.25(RSP 500
t ). So, for large (either positive or negative) returns the parabola implies expectations

of returns that are significantly lower relative to the line. Instead, if the coefficient of the quadratic term
is positive then the parabola would lay above the line and imply that hedge fund returns become less
sensitive (or even profit) from large movements in the market.
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Figure 3.8: Scatter plot of the SP 500 and the HF index returns with linear and quadratic regression line.

In Figure 3.8 we see that the contribution of the quadratic term (dashed line) becomes apparent at the
extremes (large absolute market returns), while for small returns it is close or overlaps with the fitted
values of the linear model. In terms of goodness-of-fit, the adjusted R2 of the quadratic regression is 0.34
which is a modest increase relative to 0.33 for the linear model.
ggplot(hfret1, aes(GSPC, `Hedge Fund Index`)) +

geom_point(color="antiquewhite4", alpha=0.2) +
stat_function(fun = function(x) coef(fitlin)[1] + coef(fitlin)[2]*x, color="coral1") +
stat_function(fun = function(x) coef(fitquad)[1] + coef(fitquad)[2]*x

+ coef(fitquad)[3]*x^2, color="slategrey") +
theme_bw() + labs(caption = "Credit Suisse, Yahoo")

The second type of nonlinearity that was discussed earlier assumes that the relationship between depen-
dent and independent variables is linear but with different slopes below and above a certain value of the
independent variable. In the example below we consider the median value of the independent variable as
the threshold value (in this sample the median value of the S&P 500 is 1.11%). There are two equivalent
ways to specify model6 for estimation by including in the regression:

• the GSPC return and the interaction term I(GSPC * (GSPC < m)
• the I(GSPC * (GSPC < m) and I(GSPC * (GSPC >= m)

To avoid perfect multicollinearity we need to avoid to include the variable (e.g., GSPC) and both of its
transformations in the regression since the model cannot be estimated. The lm() function in these cases
drops one of the regressors and estimates the model on the remaining ones. One advantage of the first
specification is that the coefficient of the term I(GSPC * (GSPC < m)) represents the difference in the
effect of a change of the independent variable on the dependent. If the null hypothesis that it is equal to
zero is not rejected than the data indicate that the nonlinear model is not needed and we can continue
the analysis with the linear model.
m <- median(hfret1$GSPC, na.rm=T)
fit.piecewise <- lm( `Hedge Fund Index` ~ GSPC + I(GSPC * (GSPC < m)), data=hfret1)
coeftest(fit.piecewise, vcov=NeweyWest(fit.piecewise, prewhite = FALSE))

6This specification is called piece-wise linear in the sense that it is linear in a certain range of the independent variable.
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6271 0.1380 4.54 8.3e-06 ***
GSPC 0.2152 0.0624 3.45 0.00066 ***
I(GSPC * (GSPC < m)) 0.0967 0.0915 1.06 0.29131
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.piecewise <- lm( `Hedge Fund Index` ~ I(GSPC *(GSPC < m)) + I(GSPC * (GSPC >= m)), data=hfret1)
coeftest(fit.piecewise, vcov=NeweyWest(fit.piecewise, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6271 0.1405 4.46 1.2e-05 ***
I(GSPC * (GSPC < m)) 0.3119 0.0517 6.03 5.3e-09 ***
I(GSPC * (GSPC >= m)) 0.2152 0.0635 3.39 0.00081 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The two specifications achieve the same result in term of R2 (equal to 0.34) and the parameters of one
model can be mapped into the parameters of the other model. The slope coefficient (or market exposure)
of the HF Index below the median is 0.31 and above is 0.22, which suggests that the HF Index is more
sensitive to downward movements of the market relative to upward movements. Instead, in the first
regression the results show that a 1% change in the S&P 500 causes a 0.22 change, but the index return
is below the median, that is I(GSPC < m)=1, then the effect is 0.31 which is obtained by summing 0.22
and 0.1. To evaluate statistically if the nonlinear specification is useful or not we can simply test whether
the coefficient of I(GSPC * (GSPC < m)) is equal to zero against the alternative that it is different from
zero. The pvalue for this hypothesis is 0.29and even at 10% we do not reject the null hypothesis that it is
equal to zero. Hence, this nonlinear specification does not seem to be supported by the data, as opposed
to the quadratic model. The shape of the regression line for this model and for the quadratic model are
very similar as shown in Figure 3.9, although the quadratic model is marginally superior to the linear
model by having a significant coefficient in the square term, and by achieving higher adjusted R2.
mat <- data.frame(X = (fit.piecewise$model[,2]+fit.piecewise$model[,3]), fitted = fitted(fit.piecewise))
mat <- arrange(mat, fitted)

ggplot(hfret1, aes(GSPC, `Hedge Fund Index`)) +
geom_point(color="antiquewhite4", alpha=0.3) +
geom_smooth(method="lm", se=FALSE, color="coral1") +
geom_line(data=mat, aes(X,fitted),color="purple", size=1) +
theme_bw() + labs(caption = "Credit Suisse, Yahoo")

3.4 The role of outliers

One of the strategies provided by Credit Suisse is the equity market neutral strategy that aims at providing
positive expected return, with low volatility and no correlation with the equity market. Figure 3.10
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Figure 3.9: Scatter plot of the SP 500 return and the Hedge Fund Index together with the linear regression
line and the piece-wise or threshold linear model.
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Figure 3.10: Scatter plot of the SP 500 returns and the HF Equity Market Neutral returns.

represents a scatter plot of the market return (proxied by the S&P 500) and the HF equity market
neutral return.
ggplot(hfret1, aes(GSPC, `Equity Market Neutral`)) +

geom_point(alpha=0.5) + theme_bw() + labs(caption = "Credit Suisse, Yahoo")

What is wrong with Figure 3.10? Did we do a mistake in plotting the variables? No, the only issue
with the graph is the large negative return of -51.84% for the HF strategy relative to a loss for the
S&P 500 of “only” 7.78%. To find out when the extreme observation occurred, we can use the command
which.min(hfret1$'Equity Market Neutral') which indicates that it represents the 179th observation.
What happened in November 2008 to create a loss of 51.84% to an aggregate index of market neutral
strategy hedge funds? In a press release Credit Suisse discusses that they marked down to zero the assets
of the Kingate Global Fund, which was a hedge fund based on the British Virgin Islands that acted as a
feeder for the Madoff funds and was completely wiped out when the Ponzi scheme operated by Bernard
Madoff was discovered. Does this extreme observation or outlier have an effect on our conclusions and
our assessment of the equity market neutral strategy? Let’s consider how the descriptive statistics in
Table 3.1 would change if the outlier is excluded:

• the mean would increase from 0.34% to 0.53%

http://www.hedgeindex.com/hedgeindex/en/pressrelease.aspx?cy=CHF&DocID=813
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• the standard deviation would decline from 3.35% to 1.13%
• the skewness would change from -13.74 to 0.53
• the excess kurtosis would change from 210.97 to 3.97

These results make clear that there is a significant effect of the outlier in distorting the descriptive
statistics. Statistically speaking, the estimates might be biased because the outlier has the effect of
pushing away the sample estimates from their population values. This is an important issue in practice
because we use these quantities to compare the risk-return tradeoff of different assets and also because
we wish to predict the expected future return from investing in such a strategy. Should we include or
exclude the outlier when calculating quantities that are the basis for investment decisions? This choice
depends on our interpretation of the nature of the extreme observation: is it an intrinsic feature of the
process to produce outliers occasionally or can it be attributed to a one-time event that is unlikely to
happen again? In the current situation we need to assess whether another Ponzi scheme of the magnitude
operated by Bernard Madoff can occur in the future and lead to the liquidation of a large equity market
neutral hedge fund. It is probably fair to say that the circumstances that led to the 51.84% loss were so
exceptional that it is warranted to simply drop that observation from the sample when estimating the
model parameters.
In addition to creating bias in the descriptive statistics, outliers have also the potential to bias the
coefficient estimates of the LRM. The code below shows the estimation results for the model REMN

t =
β0 + β1RSP 500

t + ϵt, where REMN
t and RSP 500

t are the returns of the equity market neutral and S&P 500
returns. The first regression model includes all observations while the second drops the outlier:
fit0 <- lm(`Equity Market Neutral` ~ GSPC, data=hfret1)
coeftest(fit0, vcov=NeweyWest(fit0, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2261 0.2376 0.95 0.342
GSPC 0.2034 0.0821 2.48 0.014 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit1 <- lm(`Equity Market Neutral` ~ GSPC, data = subset(hfret1, date != "Nov 2008"))
coeftest(fit1, vcov=NeweyWest(fit1, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4606 0.0937 4.91 1.5e-06 ***
GSPC 0.1184 0.0252 4.69 4.3e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These results indicate that by dropping the November 2008 return the estimate of β0 increases from 0.23
to 0.46 while the market exposure of the fund declines from 0.2 to 0.12. Hence, the effect of the large
negative return is to depress the estimate of the interecept (interpreted as the risk-adjusted return) and
to increase the slope (the HF exposure to the market return). However, even after removing the outlier
the exposure β1 is statistically different from zero at 1%, which indicates that the aggregate index has
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Figure 3.11: Scatter plot of the Equity Market Neutral Index and the SP 500 returns excluding the
November 2008 observations. The regression lines are estimated with/without the extreme observation.

low but significant exposure to market fluctuations. The outlier has also an effect on the goodness-of-fit
statistic since the R2 increases from 0.07 to 0.2 when the extreme observation is excluded from the sample.
Figure 3.11 shows the scatter plot of GSPC and Equity Market Neutral together with the regression
lines estimated above. In this graph the observations for November 2008 is dropped and clearly the
lightsalmon1 line seems to be closer to the points relative to the firebrick4 line that is estimated
including the outlier.
c0 <- coef(fit0)
c1 <- coef(fit1)
dplyr::filter(hfret1, `Equity Market Neutral` > -20) %>%

ggplot(., aes(GSPC, `Equity Market Neutral`)) + geom_point(alpha=0.4) +
geom_abline(intercept = c0[1], slope = c0[2], color="lightsalmon1", size = 1) +
geom_abline(intercept = c1[1], slope = c1[1],color="firebrick4", size = 1) +
labs(caption = "Credit Suisse, Yahoo")

3.5 LRM with multiple independent variables

In practice, we might be interested to include more than just one variable to explain the dependent
variable Y . Denote the K independent variables that we are interested to include in the regression by
Xk,t for k = 1, · · · , K. The linear regression with multiple regressors is defined as

Yt = β0 + β1 ∗ X1,t + · · · + βK ∗ XK,t + ϵt

Also in this case we can use OLS to estimate the parameters βk (for k = 1, · · · , K) by choosing the
values that minimize the sum of the squared residuals. Care should be given to the correlation among
the independent variables to avoid cases of extremely high dependence. The case of correlation among
two independent variables equal to 1 is called perfect collinearity and the model cannot be estimated.
This is because it is not possible to associate changes in Yt with changes in X1,t or X2,t since the two
independent variables have correlation one and move in the same direction and by a proportional amount.
A similar situation arises when an independent variable has correlation 1 with a linear combination of the



62 CHAPTER 3. LINEAR REGRESSION MODEL

independent variables7. The solution in this case is to exclude one of the variables from the regression. In
practice, it is more likely to happen that the regressors have very high correlation although not equal to
1. In this case the model can be estimated but the coefficient estimates become unreliable. For example,
equity markets move together in response to news that affect the economies worldwide. So, there are
significant co-movements among these markets and thus high correlation which can become problematic
in some situations. Before estimating the LRM, the correlation between the independent variables should
be estimated to evaluate whether there are high correlations that might make impossible or unreliable to
estimate the model. Correlations are high when they are larger than 0.85 and you should start assessing if
these variables are both needed in the regression. A practical way to assess the effect of these correlations
is to estimate the LRM with both variables, and then excluding one of them and including the other. By
comparing the adjusted R2 and the stability of the coefficient estimates and the standard errors should
give an answer whether it is the case to include both or just one of the variables.

In R the LRM with multiple regressors is estimated using the lm() command discussed before. To
illustrate the LRM with multiple regressors I will extend the earlier market model to a 3-factor model
in which there are two more independent variables or factors to explain the variation over time of the
returns of a portfolio. The factors are called the Fama-French factors after the two economists that
first proposed these factors to model risk in portfolios. In addition to the market return (MKT), they
construct two additional risk factors:

• Small minus Big (SMB) which is defined as the difference between the return of a portfolio of
small capitalization stocks and a portfolio of large capitalization stocks. The aim of this factor is
to capture the premium from investing in small cap stocks.

• High minus Low (HML) is obtained as the difference between a portfolio of high Book-to-Market
(B-M) ratio stocks and a portfolio of low B-M stocks. The high B-M ratio stocks are also called
value stocks while the low B-M ratio ones are referred to as growth stocks. The factor provides a
proxy for the premium from investing in value relative to growth stocks.

More details about the construction of these factors are available at Ken French webpage where you can
also download the data for the MKT, SMB, and HML factors and the risk-free rate (RF). The dataset
starts in July 1926 and ends in June 2017 and Figure 3.128 shows the time series plot of the 3 factors
and the risk-free rate.
plot.zoo(factors)

The data is in a xts-object called factors that has 1092 rows and 4 columns. To calculate the mean()
and sd() of each column of the object we can use the apply() function that applies a function specified
by the users to the rows or the columns of a data frame (specifying the argument MARGIN equal to 1 for

7One common situation in which this happens is when dummy variables are used in the regression. For example, assume
that we are analyzing daily data and we create 7 dummy variables called Monday which is 1 every Monday and zero otherwise,
and similarly for the other days of the week. If we include in the regression the intercept and the seven daily dummy variables
for each day the sum of the dummy variables equals 1 which is the constant (think of the intercept as 1 times a constant
value β0). There are two solutions to this problem: 1) include the intercept β0 and drop one of the sevel dummy variables,
or 2) exclude the intercept and include all seven dummy variables. If you include the intercept and the seven dummy
variables the command lm() does not provide an error message bu automatically drops one of the dummy variables and
then estimate the model.

8The plot is made using the plot.zoo() since this function (contrary to plot.xts) produces a graph with a time series
plot for each variable in the object (up to 10).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3.12: The time series of the Fama-French (FF) factors and the riskfree rate starting in 1926 at
the monthly frequency. The data is obtained from Ken French website.
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rows and 2 for columns). The example below shows how to calculate the mean and standard deviation
of the variables and combines them in a data frame:
data.frame(AVERAGE = apply(factors, 2, mean), STDEV = apply(factors, 2, sd))

AVERAGE STDEV
MKT 0.66 5.36
SMB 0.21 3.21
HML 0.39 3.50
RF 0.28 0.25

The average monthly MKT return from 1926 to 2017 has been 0.66% in excess of the risk-free rate.
The average of SMB is 0.21% and represents the monthly premium deriving from investing in small
capitalization relative to large capitalization stocks. The sample average of HML is 0.39% which measures
the premium from investing in value stocks (high book-to-market ratio) relative to growth stocks (low
book-to-market ratio). The standard deviation of MKT, SMB, and HML factors are 5.36%, 3.21%, and
3.5%, respectively. Another statistic that is useful to estimate is the correlation between the factors that
allows us to measure their dependence. We can calculate the correlation matrix using the cor() function
that was introduced earlier:
cor(factors)

MKT SMB HML RF
MKT 1.000 0.318 0.240 -0.065
SMB 0.318 1.000 0.123 -0.051
HML 0.240 0.123 1.000 0.021
RF -0.065 -0.051 0.021 1.000

The correlation matrix is a table that shows the pair-wise correlation between the variable in the row
and the one in the column. The numbers in the diagonal are all equal to 1 because they represent
the correlation of a factor with itself. The correlation estimates show that SMB and HML are weakly
correlated to the MKT returns (0.32 and 0.24, respectively) and also among each other (0.12). In this
sense, it seems that the factors capture moderately correlated sources of risk which can be valuable from
a diversification stand-point.

3.5.1 Size portfolios

Financial economics has devoted lots of energy to understand the factors driving asset prices and their
expected returns. On the way, many anomalies have emerged in the sense of empirical facts that did not
align with a theory. In this case the theory is the Capital Asset Pricing Model (CAPM) which states
that the expected return of an asset should be proportial to the exposure to systematic risk measure by
the excess market return relative to the risk-free rate of return. If we denote by Ri

t the excess return of
asset i in period t and by RMKT

t the excess market return in the same period, the CAPM predicts that

Ri
t = α + βRMKT

t + ϵt

where the intercept α in the theory should be equal to zero and the slope β measures the exposure of the
asset to market risk. Let’s consider an application. The data library in Ken French webpage provides
historical data for the returns of portfolio of stocks formed based on their market capitalization. The
way these portfolio are constructed is by sorting once a year all the stocks listed in the NYSE, AMEX,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 3.2: Average return and standard deviation of the decile portfolios sorted by size.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
AV.RET 1.1 0.98 0.98 0.93 0.89 0.9 0.83 0.8 0.73 0.61
STD.DEV 10.0 8.73 7.97 7.44 7.06 6.8 6.43 6.1 5.80 5.05

and NASDAQ from the largest capitalization to the smallest and then creating portfolios that invest in
a fraction of these stocks. The French dataset forms size portfolios as follows:

• 3 portfolios: the 30% of smallest capitalization, the 30% of largest, and the 40% of medium capi-
talization

• 5 portfolios: lowest 20%, largest 20%, and 20% interval between the smallest and largest (quintiles)
• 10 portfolios: divide the sample at intervals of 10% (deciles)

This process can be interpreted as a mutual fund that once a year (typically in June) forms a portfolio
of stocks based on their market capitalization and keeps that allocation for one year. First, let’s consider
the 10 decile portfolios and calculate the average return over the period 1926-2017:
port10 <- c("Lo 10", "Dec 2","Dec 3","Dec 4","Dec 5",

"Dec 6","Dec 7","Dec 8", "Dec 9", "Hi 10")
size10 <- subset(port.size, select=port10)
table.size10 <- data.frame(`AV RET` = apply(size10, 2, mean),

`STD DEV` = apply(size10, 2, sd))
knitr::kable(t(table.size10), digits=3,

caption = "Average return and standard deviation of the decile
portfolios sorted by size.")

The results in Table 3.2 show that, historically, portfolios of small caps have provided significantly higher
returns relative to portfolios of large caps. A portfolio that consistently invested in the 10% of smaller
caps earned an average monthly return of 1.12% relative to the portfolio of the largest companies that
earned 0.61%. Why is the expected return of small caps portfolios higher relative to the larger caps? Is it
because they are more risky? This is definitely the case since the standard deviation of the smallest cap
portfolio is 9.96% relative to the 5.05% of the largest cap portfolio. Why is the standard deviation higher
for small caps? do we want to look for an explanation to both? The CAPM model predicts that stocks or
portfolios that are more exposed to systematic risk (high β) are riskier and receive compensation in the
form of higher expected returns. Let’s estimate the CAPM model in the previous Equation to the 10 size
portfolios and, if the CAPM is correct, we should find that βs decline moving from the 1st decile portfolio
to the 10th portfolio and that αs are close to zero. The code below estimates the CAPM model with
the dependent variable being size10 which is a xts object with 10 columns and 1092 rows. The lm()
command will automatically estimate the regression on the independent variable MKT for each column of
the object size10.
size.capm <- lm(size10 ~ MKT, data=factors)
knitr::kable(coef(size.capm), digits=3,

caption="OLS estimates of the intercept and slope coefficients in the CAPM
regression for 10 portfolio sorted by size (market capitalization).")
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Table 3.3: OLS estimates of the intercept and slope coefficients in the CAPM regression for 10 portfolio
sorted by size (market capitalization).

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
(Intercept) 0.19 0.075 0.11 0.11 0.082 0.11 0.071 0.063 0.034 -0.005
MKT 1.42 1.386 1.33 1.26 1.229 1.20 1.152 1.115 1.063 0.931
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Figure 3.13: Bar plot of the average return of the decile portfolios sorted on size together with the
estimated intercept (alpha). The horizontal line represents the average MKT return.

The estimates of the slope coefficients in Table 3.3 show, as expected, that smaller caps have higher
betas relative to portfolios of large cap stocks (1.42 vs 0.93). This explains the fact that portfolios with
more exposure to small caps are more volatile and provide higher expected returns relative to portfolios
with predominantly larger stocks. What about the intercepts or alpha? The CAPM model predicted
that these coefficients should be equal to zero, but a first assessment of the estimates does not seem to
confirm this. The first portfolio has an estimate of α of 0.19 which, from the perspective of monthly
returns, is a considerable number. However, a proper assessment of the hypothesis that α = 0 should
account for the standard errors of the estimates and perform a statistical test of the hypothesis against
the alternative that the intercept is different from zero. The CAPM model also implies that the expected
return of the portfolios, E(Ri

t), is given by the sum of α and the compensation for exposure to market
risk, βRMKT

t . We can use the ggplot2 package to do a bar-plot that helps visualizing the contribution
of each component of the expected return.
size10.stat <- data.frame(PORT = factor(names(size10), levels=names(size10)),

AVRET = apply(size10, 2, mean),
ALPHA = coef(size.capm)['(Intercept)',],
BETA = coef(size.capm)['MKT',])

ggplot(size10.stat) + geom_bar(aes(x = PORT, y = AVRET), fill="gray90", stat = "identity") +
geom_bar(aes(x = PORT, y = ALPHA),fill = "lightsteelblue2", stat="identity") +
theme_bw() + labs(x = "", y = "Return", title="Size Portfolios") +
geom_hline(yintercept = mean(factors$MKT), color="orangered2")

Figure 3.13 shows that the CAPM model explains a significant component of the average return of the
portfolios, but there is still between 10-20% of the return that is attributed to alpha. As we said before, it
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could be that these intercepts are not estimated very precisely so that statistically they are not different
from zero. To evaluate this hypothesis we need to obtain the standard errors or the t-statistic from the
lm() object. Since the dependent variable size10 in the previous regression is composed of 10 variable,
the lm object for summary(size.capm) stores the regression results in a list with 10 elements and each
element represents the results for one portfolio. For example:
summary(size.capm)[[1]]

Call:
lm(formula = `Lo 10` ~ MKT, data = factors)

Residuals:
Lo 10

Min -18.59
1Q -2.85
Median -0.40
3Q 1.98
Max 78.08

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1878 0.1963 0.96 0.34
MKT 1.4201 0.0364 39.02 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.4 on 1090 degrees of freedom
Multiple R-squared: 0.583, Adjusted R-squared: 0.582
F-statistic: 1.52e+03 on 1 and 1090 DF, p-value: <2e-16

To extract the t-statistic of the intercept for each item in the list in one line we can use the lapply() or
the sapply() function that apply a user-specified function to each item of a list. In this simple case, the
function sapply() is preferable because it returns a vector rather than a list as the lapply() function
does. The code to obtain this is shown below where we extract the value in row 1 and column 3 of
coefficients for each item in the list:
capm.tstat <- sapply(summary(size.capm), function(x) tstat = x$coefficients[1,3])

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
0.96 0.54 0.98 1.12 1.06 1.70 1.29 1.41 1.02 -0.21

Since all t-statistics are smaller than 1.96 we do not reject the null hypothesis that the α = 0 for each
of these 10 portfolios at 5% significance level, while at 10% significance only the intercept for the 6th
decile is significant. Let’s also extract from the regression results the adjusted R2 of the regression and
the standard error of regression. In the code below, I also bind the standard deviation of each portfolio
return so that we can access the magnitude of the variables.
size.capm.stats <- sapply(summary(size.capm),

function(x) c(SER = x$sigma, AD.RSQ = x$adj.r.squared))
colnames(size.capm.stats) <- colnames(size10)
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Table 3.4: Loadings of 3 Fama-French factors on 10 portfolio sorted by market capitalization.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
(Intercept) -0.17 -0.17 -0.085 -0.055 -0.034 0.005 -0.001 0.01 -0.004 0.023
MKT 1.00 1.07 1.080 1.042 1.061 1.075 1.053 1.05 1.033 0.977
SMB 1.56 1.27 1.004 0.881 0.724 0.493 0.408 0.24 0.066 -0.215
HML 0.78 0.48 0.374 0.308 0.193 0.224 0.132 0.12 0.114 -0.034

The first portfolio is twice more volatile relative to the last portfolio and the CAPM model contributes
to explain most of its variability (adjusted R2 of 0.97), but only 0.58 for Lo 109. This suggests that
the small cap portfolios could benefit from adding additional risk factors that might explain some of the
unexplained variation of the returns and so improve R2.

The CAPM model predicts that the portfolio return should be explained by just one factor, the market
return. This assumption might work for some portfolios, but it seems that it has some difficulties
explaining the return of portfolios in which small cap stocks are predominant. Fama and French (1993)
proposed a 3-factor model that add SMB and HML to the MKT factor given by

Ri
t = α + βMKT RMKT

t + βSMBSMBt + βHMLHMLt + ϵt

Let’s see how the results would change if we estimate the 3-factor model on the size portfolios:
size.3fac <- lm(size10 ~ MKT + SMB + HML, data=factors)
knitr::kable(coef(size.3fac), digits=3,

caption="Loadings of 3 Fama-French factors on 10
portfolio sorted by market capitalization.")

The results in Table 3.4 show that:

• the estimated alpha are mostly negative
• the exposure to market risk (market beta) is very close to 1 for all portfolios and significantly

smaller for the low decile portfolios relative to the CAPM regression (the beta for the first portfolio
decreases from 1.42 to 1).

• The loading on the SMB for the low decile portfolios is large and positive and decreases until it
becomes negative for the last decile portfolios. This is expected since the low portfolios have a
larger exposure to small caps and thus benefit from the risk premium of small caps.

• Although we are not sorting stocks based on the book-to-market ratio but only on size, the loading
on the HML factor is positive and large at low quantiles and decreases to approximately zero for
the portfolio of largest cap stocks. This indicates the out-performance of the small caps portfolios
is partly due also to a book-to-market effect, in the sense that small stocks are more likely to be
value stocks and the regression is able to distinguish the component of the return that is due to the
size effect and the part that is due to the value effect.

In addition, the comparison in Table 3.5 of the adjusted R2 for the CAPM and 3-factor model indicates
that the largest improvements in goodness-of-fit occur for the lowest decile portfolios, while for the top

9Remember that the R2 is one minus the ratio of the variance of the residuals divided by the variance of the dependent
variable; the values in the table are the standard deviations of the residuals and the quantities should be squared to calculate
R2 (also, the R2 reported is adjusted).
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Table 3.5: Adjusted R-square for the CAPM and the 3-factor models estimated on the size portfolios.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
CAPM 0.58 0.72 0.80 0.82 0.87 0.90 0.92 0.94 0.96 0.97
3-FACTOR 0.89 0.96 0.98 0.97 0.98 0.96 0.96 0.96 0.97 0.99

Table 3.6: Average return and standard deviation of the decile portfolios sorted by Book-to-Market ratio.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
AVRET 0.59 0.69 0.69 0.66 0.72 0.79 0.72 0.91 1.1 1.1
STDEV 5.70 5.30 5.40 5.92 5.70 6.01 6.43 6.72 7.7 9.2

decile portfolios the improvement is marginal.
size.capm.stats <- sapply(summary(size.capm), function(x) AD.RSQ = x$adj.r.squared)
size.3fac.stats <- sapply(summary(size.3fac), function(x) AD.RSQ = x$adj.r.squared)
size.stats <- rbind(CAPM = size.capm.stats, `3-FACTOR` = size.3fac.stats)
colnames(size.stats) <- colnames(size10)
knitr::kable(size.stats, digits=3, caption="Adjusted R-square for the CAPM

and the 3-factor models estimated on the size portfolios.")

3.5.2 Book-to-Market Ratio Portfolios

Another indicator that is often used to form portfolios is the book-to-market (BM) ratio, i.e., the ratio of
the book value of a company to its market capitalization. Portfolios are formed by sorting stocks based
on the BM ratio and decile portfolios are formed. Stocks with high BM ratio are called value and those
with low BM ratio are called growth. Historically, value stocks have outperformed growth stocks which
calls for an explanation similar to our earlier discussion of the outperformance of small relative to large
capitalization stocks. Below is the code that calculates the average return and the standard deviation of
the BM portfolios.
port10 <- c("Lo 10", "Dec 2","Dec 3","Dec 4","Dec 5",

"Dec 6","Dec 7","Dec 8", "Dec 9", "Hi 10")
b2m10 <- subset(port.b2m, select=port10)

table.b2m10 <- data.frame(AVRET = apply(b2m10, 2, mean),
STDEV = apply(b2m10, 2, sd))

knitr::kable(t(table.b2m10), digits=3,
caption = "Average return and standard deviation of the decile

portfolios sorted by Book-to-Market ratio.")

Table 3.6 shows that the first BM portfolio (growth stocks), has an average monthly return of 0.59% and
a standard deviation of 5.7% as opposed to the last portfolio (value stocks) that has an average return of
1.07% and a standard deviation of 9.21%. Similarly to the size portfolios, there is a significant increase in
the average return that comes also with an increase of its uncertainty. Similarly to the previous analysis,
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Table 3.7: Coefficient estimates for the CAPM model on 10 portfolio sorted by book-to-market ratio.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
(Intercept) -0.078 0.065 0.054 -0.025 0.065 0.11 0.002 0.16 0.22 0.11
MKT 1.011 0.947 0.970 1.049 1.002 1.03 1.101 1.14 1.28 1.46

Table 3.8: Coefficient estimates of the 3-factor model on 10 portfolio sorted by book-to-market ratio.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
(Intercept) 0.024 0.120 0.071 -0.064 -0.005 -0.003 -0.156 -0.036 -0.045 -0.25
MKT 1.077 0.978 0.986 1.032 0.975 0.977 1.011 1.015 1.103 1.19
SMB -0.072 -0.004 -0.045 -0.036 -0.079 -0.058 0.021 0.118 0.223 0.55
HML -0.336 -0.192 -0.047 0.151 0.270 0.427 0.546 0.665 0.854 1.09

we will proceed by estimating the CAPM model and the 3-factor model and evaluate the performance of
each model in explaining the expected return of the BM portfolios.
b2m.capm <- lm(b2m10 ~ MKT, data=factors)
knitr::kable(coef(b2m.capm), digits=3,

caption="Coefficient estimates for the CAPM model on 10 portfolio
sorted by book-to-market ratio.")

As expected the exposure to market risk (beta) reported in Table 3.7 increases from 1.01 for the growth
portfolio to 1.46 for the value portfolio. The beta for the BM portfolios is mostly close to 1 and increases
significantly only for the top decile portfolios. In terms of the intercept α, the estimates are close to
zero except for the top three deciles that are larger than zero and have t-statistics of 1.929, 2.052, 0.739
respectively.
b2m.3fac <- lm(b2m10 ~ MKT + SMB + HML, data=factors)
knitr::kable(coef(b2m.3fac), digits=3,

caption="Coefficient estimates of the 3-factor model on 10 portfolio
sorted by book-to-market ratio.")

Table 3.8 shows the results for the 3-factor model. The MKT beta for the value portfolio (top decile) has
declined but it is still significantly larger than one. The SMB beta is mostly close to zero, except for the
top three deciles where it is increasingly positive (equals 0.55 for the Hi 10 portfolio). This confirms the
findings for the size portfolios that value and small cap stocks intersect to a certain degree. Finally, the
HML beta shows negative loadings in the growth portfolios and positive loadings in the value portfolios.
In terms of goodness-of-fit, comparing the adjusted R2 in Table 3.9 the 3-factor model is preferable for
all portfolios to the CAPM model with the largest improvements occuring for the top decile portfolios.
b2m.capm.stats <- sapply(summary(b2m.capm), function(x) AD.RSQ = x$adj.r.squared)
b2m.3fac.stats <- sapply(summary(b2m.3fac), function(x) AD.RSQ = x$adj.r.squared)
b2m.stats <- rbind(CAPM = b2m.capm.stats, `3-FACTOR` = b2m.3fac.stats)
colnames(b2m.stats) <- port10
knitr::kable(b2m.stats, digits=3, caption="Adjusted R-square for the CAPM
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Table 3.9: Adjusted R-square for the CAPM and the 3-factor models estimate on the Book-to-Market
portfolios.

Lo 10 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Hi 10
CAPM 0.90 0.91 0.93 0.90 0.89 0.85 0.84 0.83 0.80 0.72
3-FACTOR 0.94 0.93 0.93 0.91 0.91 0.91 0.93 0.95 0.95 0.93

and the 3-factor models estimate on the Book-to-Market portfolios. ")

3.5.3 CAPM and 3-factor models using dplyr

An alternative approach to estimate the asset pricing models on a set of portfolios or funds is to use the
package dplyr. The advantage of using dplyr is that it allows to leverage its syntax and make the code
more compact and transparent. In the application below, we estimate the CAPM and 3-factor model to
the 10 size portfolios, but the code scales up to many more assets by only changing the input data frame.
Some notes on the various steps and the new commands that are used below:

• first, the xts object size10 is converted to a data frame and a column date is created
• the data frame is re-organized from 10 columns representing the returns over time of the strategy

to a data frame with three columns representing:
– date: the month of the observation
– Portfolio: the portfolio (Lo.10, …, Hi.10)
– RET: the value of the monthly return

• The function used to re-organize the data is gather() from the package tidyr that takes three
arguments:

– a data frame
– the name of the new column to create based on the column names of the data frame
– the name of the new column to create that will be filled wi the values of the returns of each

strategy
• The do() command used to create size.model is used because there is no dplyr verb that does

the operation we are interested in; in this case the do() command consists of the estimation of the
CAPM and 3-factor model. The size.model will be a data frame with 10 rows and 3 columns
representing the portfolio name, and the two additional columns containing the estimation output.

• To extract information from size.model we use the functions tidy() and glance() from package
broom; the function tidy() produces a data frame with the portfolio names, the regressor (e.g.,
(Intercept), MKT, SMB, HML) and additional columns for estimate, std.error, statistic, and
p.value. Instead, the role of glance() is to extract the additional information about the regression
such as the R2, the adjusted R2, the standard error of the regression (sigma), the F-statistic, its
p-value, and a few more statistics.

• We then reorganize the information in a table format (capm.tab and ff3fact.tab) and print the
tables using kable()
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Table 3.10: Estimation results for the CAPM model on the 10 size portfolios.

Portfolio alpha MKT r.squared adj.r.squared sigma statistic p.value
Lo.10 0.188 1.42 0.58 0.58 6.44 1523 0
Dec.2 0.075 1.39 0.72 0.72 4.61 2829 0
Dec.3 0.107 1.33 0.80 0.80 3.58 4318 0
Dec.4 0.108 1.26 0.82 0.82 3.16 4962 0
Dec.5 0.082 1.23 0.87 0.87 2.55 7281 0
Dec.6 0.111 1.20 0.90 0.90 2.13 9974 0
Dec.7 0.071 1.15 0.92 0.92 1.82 12561 0
Dec.8 0.063 1.11 0.94 0.94 1.46 18256 0
Dec.9 0.034 1.06 0.96 0.96 1.10 28976 0
Hi.10 -0.005 0.93 0.97 0.97 0.83 39492 0

size10.df <- data.frame(date = ymd(time(size10)), coredata(size10))
factors.df <- data.frame(coredata(factors))
size10.df <- tidyr::gather(size10.df, "Portfolio", "RET", 2:ncol(size10.df), factor_key = TRUE)
size.model <- size10.df %>%

group_by(Portfolio) %>%
mutate(MKT = factors.df$MKT, SMB = factors.df$SMB, HML = factors.df$HML) %>%
do(fit.capm = lm(RET ~ MKT, data=.),

fit.3f = lm(RET ~ MKT + SMB + HML, data=.))

capm.tab <- broom::tidy(size.model, fit.capm) %>% dplyr::select(Portfolio, term, estimate) %>%
tidyr::spread(term, estimate) %>% rename(alpha = `(Intercept)`) %>%
full_join(broom::glance(size.model, fit.capm), by = "Portfolio")

ff3fact.tab <- broom::tidy(size.model, fit.3f) %>% dplyr::select(Portfolio, term, estimate) %>%
tidyr::spread(term, estimate) %>% rename(alpha = `(Intercept)`) %>%
full_join(broom::glance(size.model, fit.capm), by = "Portfolio")

Table 3.10 and 3.11 show the regression results for the two asset pricing models estimated on the returns
of the 10 size portfolios that includes the coefficient estimates of alpha and the exposures, in addition
to the adjusted and unadjusted R2 of the regression, the standard error of the regression (sigma), the
F-statistic (statistic) and its p-value. Instead of presenting the regression results in a table format, we
can plot the information in a graph which might be a more intuitive way of communicating the results.
In Figure 3.14 the CAPM beta estimates for the 10 size portfolios are shown together with a line that
represents the R2 goodness-of-fit statistics for the portfolios. As we move from Lo.10 to Hi.10 (from
small to large caps) the MKT beta decreases, the goodness-of-fit increases, and alpha decreases. These
three indicators point in the same direction: the CAPM model is a good at explaining the top decile
portfolios, but has some difficulties in pricing the low decile portfolios since R2 is (relatively) low and
alpha is large.
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Table 3.11: Estimation results for the Fama French 3-factor model on the 10 size portfolios.

Portfolio alpha HML MKT SMB r.squared adj.r.squared sigma statistic p.value
Lo.10 -0.167 0.780 1.00 1.561 0.58 0.58 6.44 1523 0
Dec.2 -0.170 0.481 1.07 1.269 0.72 0.72 4.61 2829 0
Dec.3 -0.085 0.374 1.08 1.004 0.80 0.80 3.58 4318 0
Dec.4 -0.055 0.308 1.04 0.881 0.82 0.82 3.16 4962 0
Dec.5 -0.034 0.193 1.06 0.724 0.87 0.87 2.55 7281 0
Dec.6 0.005 0.224 1.07 0.493 0.90 0.90 2.13 9974 0
Dec.7 -0.001 0.132 1.05 0.408 0.92 0.92 1.82 12561 0
Dec.8 0.010 0.115 1.05 0.236 0.94 0.94 1.46 18256 0
Dec.9 -0.004 0.114 1.03 0.066 0.96 0.96 1.10 28976 0
Hi.10 0.023 -0.034 0.98 -0.215 0.97 0.97 0.83 39492 0
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Figure 3.14: The alpha and beta estimates for the CAPM model for 10 portfolio sorted on size. The line
represents the R2 of the regression model.

capm.plot <- broom::tidy(size.model, fit.capm) %>%
mutate(term = plyr::mapvalues(term, from="(Intercept)", to="alpha"))

ggplot(capm.plot) +
geom_bar(aes(x=Portfolio, y=estimate, fill=term), stat="identity", position="dodge") +

geom_line(aes(x=Portfolio, y=r.squared,group=1), data=capm.tab, color="orange", size=1.5) +
theme_classic() + geom_hline(yintercept = 1, color="black", linetype="dashed")+
labs(x="Portfolio", y="", title="Size Portfolios", subtitle="CAPM beta and R squared")

When extending the analysis to the 3-factor model we find that the MKT exposure is quite similar across
portfolios and close to 110. The exposure to SMB risk is high for Lo.10 and reduces as the component of
small cap stocks decreases in higher decile portfolios. The contribution of the HML factor to the expected
returns of the portfolios follows a similar pattern. Hence, low decile size portfolios benefit from both a

10Compare the MKT beta estimate for the CAPM model in Figure 3.14 and ??: why did they become smaller when
estimating the 3-factor model on the low decile portfolios?
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Figure 3.15: The alpha and beta estimates for the 3-factor model for 10 portfolio sorted on size. The line
represents the R2 of the regression model.

small cap and a value perspective. In addition, it turns out that the alpha estimates are negative, in
particular for the low quantile portfolios which suggests that the model is actually over-correcting for the
small size effect. A visualization of the estimation results is given in Figure 3.15.
ff3fact.plot <- broom::tidy(size.model, fit.3f) %>%

mutate(term = plyr::mapvalues(term, from="(Intercept)", to="alpha"))

ggplot(ff3fact.plot) +
geom_bar(aes(x=Portfolio, y=estimate, fill=term), stat="identity", position="dodge") +

geom_line(aes(x=Portfolio, y=r.squared, group=1), data=ff3fact.tab, color="orange", size=1.5) +
theme_classic() + geom_hline(yintercept = 1, color="black", linetype="dashed")+
labs(x="Portfolio", y="", title="Beta and R square")

Figure 3.16 represents a scatter plot of the alpha of the regression and the MKT beta in the CAPM
model. It is interesting to notice that larger alpha are also associated with higher beta. As we saw in
Figure 3.14, the combination of large alpha and large beta describes mostly the lowest decile portfolios,
while large cap have lower market exposure and no alpha.
ggplot(capm.tab, aes(x=alpha, y=MKT)) + geom_point() +

theme_bw() + geom_smooth(method="lm", se=FALSE, color="darkgreen")

3.5.4 What a style!

The data on size and BM portfolio returns provided in French’s data library are constructed for academic
research and are not actually traded in financial markets. However, there are several products available
in the form of mutual funds or ETF for those investors that are interested in getting exposure to these
risks. As an example, let’s consider the DFA Small Cap Value mutual fund (ticker: DFSVX) that invests
in companies with small capitalization that are considered undervalued according to a valuation ratio
(e.g., Book to Market ratio). In this case the name of the fund already provides a clear indication of the
type of risks that are involved in investing in such as fund. By regressing the returns of DFSVX on the
Fama-French factors we can assess whether the stated investment strategy (small cap value) is indeed
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Figure 3.16: Scatter plot of the portfolio alpha and the MKT beta for the 10 portfolios sorted on size.

followed and whether the fund provides alpha, that is, the expected return that is not due to exposure
to market, small cap, and value risks.
DFSVX <- getSymbols("DFSVX", from = "1993-03-01", auto.assign=FALSE)
DFSVX <- Ad(to.monthly(DFSVX))
DFSVX <- 100 * diff(log(DFSVX))
names(DFSVX) <- 'DFSVX'

fit <- lm(DFSVX ~ MKT + SMB + HML, data=merge(factors, DFSVX))
fit.table <- coeftest(fit, vcov=NeweyWest(fit, prewhite = FALSE))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00581 0.06804 0.09 0.93
MKT 1.03885 0.02035 51.04 <2e-16 ***
SMB 0.78181 0.06477 12.07 <2e-16 ***
HML 0.66912 0.04094 16.34 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results show that DFSVX has statistically significant exposure to all three risk factors, in particular
with large positive coefficients both in the SMB and in the HML factors. The R2 of the regression is
0.96 that is very high and indicates that the factors explain most of the variation in the fund returns.
In addition, the alpha is very close to zero and with a t-stat of 0.09 it is not statistically different from
zero. The overall picture that emerges is that the DFSVX represents a tradable asset to obtain passive
exposure to market, small cap, and value stocks. In addition, keep in mind that we might have ignored
the investment strategy followed by the fund, and the simple interpretation of the regression results would
have indicated that the manager invests in US small cap value stocks. Although the illustration is for
mutual funds that are highly transparent about their investment strategy, the technique can be used also
to investigate hedge fund returns or the returns of an investment strategy.

Let’s practice using the Fama-French 3-factor model. Assume that you are assigned the task of classifying
the investment style of 7 mistery funds that you are given to analyze. The only information you are
provided is that these funds invest in U.S. equity only. This is called style analysis in the sense that you
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are trying to understand the investment style or philosophy of a mutual or hedge fund. In the code below,
I retrieve prices for 7 mistery.ticks from Yahoo Finance and create the monthly returns. Notice some
new features in the code below:

• An environment called mistery.env is defined where the function getSymbols() stores the seven
xts objects

• Function eapply() is an apply function that is used for environments and applies a function to
each element of an environment

• The function that is used in eapply() to each of the seven elements is function(x) 100 *
ClCl(to.monthly(x)) which calculates the percentage return as follows:

– takes element x of the environment
– subsamples to monthly frequency using to.monthly()
– calculates the close-to-close return with function ClCL()
– multiplies by 100 to make the return percentage

• mistery.list is a list with each element representing a xts object with the return of a mistery
fund

• Reduce() merges the elements in the list in a xts-object that has seven columns; keep in mind that
each fund might have started at different points in time so that merging takes care of aligning the
dates appropriately.

• The columns/variables of the mistery.ret are named FUND1 to FUND7 to keep their anonymity

The last three observations are shown below. Relative to the previous Chapter, we introduced the
eapply() function that is not very often used by intermediate R programmers, but it is very useful in
this case to extract the information needed in a few lines of code. Also, notice that this code could have
been generalized to a larger number of tickers with no additional programming effort.
# mistery.ticks is a vector with 7 "mistery" tickers
mistery.env <- new.env()
mistery.ticks <- getSymbols(mistery.ticks, from = "1995-03-01", env = mistery.env)
mistery.list <- eapply(mistery.env, function(x) 100*ClCl(to.monthly(x)))
mistery.ret <- Reduce(merge, mistery.list[mistery.ticks])
mistery.names <- paste("FUND", 1:length(mistery.ticks), sep="")
colnames(mistery.ret) <- mistery.names
tail(mistery.ret, 3)

FUND1 FUND2 FUND3 FUND4 FUND5 FUND6 FUND7
Jul 2017 2.07 0.79 0.47 1.68 0.77 0.87 1.41
Aug 2017 0.26 -2.31 -2.16 -0.94 -2.55 -2.02 0.81
Sep 2017 0.21 0.71 0.72 0.49 0.67 0.71 0.12

Once we create the returns for the seven funds, the next step is to estimate the 3-factor model. In this
case we can follow the earlier approach of using mistery.ret in the lm() formula that will estimate the
regression model on MKT, SMB, and HML for each column/variable. Can you tell the style of these
funds based on the results on Table 3.12? Which fund invests in large, large value, large growth, small,
small value, and small growth stocks?
mistery.data <- merge(mistery.ret, factors)
fit <- lm(mistery.data[,mistery.names] ~ MKT + SMB + HML, data=mistery.data)
mistery.rsq <- sapply(summary(fit), function(x) AD.RSQ = x$adj.r.squared)
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Table 3.12: Estimation results for seven mistery mutual fund returns regressed on the Fama-French 3
factors. The estimation is perfomed with the lm() command.

FUND1 FUND2 FUND3 FUND4 FUND5 FUND6 FUND7
(Intercept) -0.195 -0.36 -0.39 -0.36 -0.54 -0.13 -0.19
MKT 0.999 1.02 0.98 1.10 1.06 0.99 1.01
SMB -0.156 0.76 0.88 0.00 0.80 0.69 -0.13
HML -0.022 0.28 0.34 0.32 0.51 0.08 -0.12
R squared 0.984 0.92 0.88 0.92 0.91 0.95 0.96

When we apply the lm() function to a data frame as the dependent variable the function estimates the
parameters on the same set of observations for all variables, that is, eliminating missing values. This can
be an issue in this dataset since these funds started at different point in time11. For example, the earliest
fund started in Apr 1995 and the latest in Jan 2013 so that the approach followed above drops many years
of data for the longest existing funds. This is not necessarily a bad thing, since there are situation in
which you might want to estimate the model parameters for all funds on the same time period. However,
there are also cases in which you want to estimate the coefficient on the longest available sample for each
fund. If this is the case, then we need to take a different coding strategy relative to the previous one
which consists of estimating the 3-factor model having each column of mistery.ret as the dependent
variable. This can be done using a loop over the columns of the object or using an apply()-type function
that substitutes for the need of the loop. The example below first defines a function myf() that takes a
variable x that is a xts object, merges the variables with the factors and then runs a regression of the
variable on MKT, SMB, and HML. This function is then passed to sapply() which applies the function
to each column of the object mistery.ret. The reason for using sapply() instead of apply() is that it
provides a matrix of the results already formatted. Comparing Table 3.13 to 3.12 that are some minor
differences on the coefficient estimates, but no major differences relative to the previous case.
myf <- function(x)
{
data=merge(x,factors)
fit <- lm(data[,1] ~ MKT + SMB + HML, data=data)
output <- c(coef(fit), 'R squared' = summary(fit)$r.squared)
return(output)

}
out <- sapply(mistery.ret, myf)
knitr::kable(out, digits=3, caption="Estimation results for seven mistery mutual fund

returns regressed on the Fama-French 3 factors. The estimation is performed
individually on each fund")

Footnote12 provides the solution to the mistery.

11However, this was not a problem earlier when estimating the size and BM portfolios because we had complete observa-
tions for all portfolios

12The mistery funds are: 1) DFUSX: DFA US Large Company, 2) DFSTX: DFA US Small Cap, 3) DFSCX: DFA US
Micro Cap, 4) DFLVX: DFA US Large Cap Value, 5) DFSVX: DFA US Small Cap Value, 6) DSCGX: DFA US Small Cap
Growth Instl, 7) DUSLX: DFA US Large Cap Growth Instl
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Table 3.13: Estimation results for seven mistery mutual fund returns regressed on the Fama-French 3
factors. The estimation is performed individually on each fund

FUND1 FUND2 FUND3 FUND4 FUND5 FUND6 FUND7
(Intercept) -0.022 -0.27 -0.33 -0.219 -0.33 -0.13 -0.19
MKT 0.984 1.01 0.96 1.062 1.01 0.99 1.01
SMB -0.175 0.78 0.93 -0.097 0.74 0.69 -0.13
HML 0.034 0.29 0.20 0.558 0.62 0.08 -0.12
R squared 0.988 0.90 0.81 0.844 0.85 0.95 0.96

3.6 Omitted variable bias

An important assumption that is introduced when deriving the properties of the OLS estimator is that the
regressors included in the model represent all those that are relevant to explain the dependent variable.
However, in practice it is difficult to make sure that this assumption is satisfied. In some situations
we might not observe a variable that we believe relevant to explain the dependent variable, while in
other situations we might not know which variables are actually relevant. What is the effect of omitting
relevant variables on the OLS coefficient estimates? The answer depends on the correlation between the
omitted variable and the included variable(s). If the omitted and included variables are correlated, then
the estimate of the slope coefficients of the regressors will be biased, that is, they will be significantly
different from their true value. However, if we omit a relevant variable that is not correlated with any
of the included variables, then we do not expect any bias in the coefficient estimate. To illustrate this
concept, we will discuss first an example on financial data and then perform a simulation exercise to
illustrate the bias.

Assume that we are given to analyze a mutual fund return with the aim to understand the risk factors
underlying the performance of the fund. Take this as another mistery fund that we want to classify in
terms of investment style. We could start the empirical analysis as we did earlier, by assuming that the
relevant factors to include in the regression are the Fama-French factors. The 3-factor model is thus given
by Rfund

t = β0 + β1 ∗ MKTt + β2 ∗ SMBt + β3 ∗ HMLt + ϵt and its estimation by OLS provides the
following results:

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0589 0.3838 0.15 0.878
MKT 1.0367 0.0753 13.77 <2e-16 ***
SMB 0.2746 0.1191 2.31 0.022 *
HML -0.0280 0.1110 -0.25 0.801
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fund has an exposure of 1.04 against the US equity market that is highly significant. In addition,
there seems to be significant (at 10%) exposure to SMB with a coefficient of 0.28 and a t-statistic of
2.31, but not to HML which has a t-statistic of -0.25. In addition, the R2 of the regression is equal to
0.53, which indicates a reasonable fit, although for this type of regressions we typically expect larger
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goodness-of-fit statistics (see the previous Section). Based on these results, we would conclude that the
exposure to MKT makes the fund sensitive to the fluctuations of the overall US equity market, in addition
to some exposure to the small cap premium deriving from increase exposure to small caps. However, it
turns out that the fund is the Oppenheimer Developing Markets (ticker: ODMAX) which is a fund that
invests exclusively in stocks from emerging markets and does not hold any US stock. How do we make
sense of the regression results above and the stated investment strategy of the fund? How is it possible
that the exposures to the MKT and SMB are large and significant in the regression above but the fund
does not hold any US stock? It is possible because the MKT and SMB might be correlated with an
omitted risk factor (e.g., emerging market risk) which causes bias in the estimates for MKT and SMB.
The bias is due to the fact that omitting a relevant risk factor makes the MKT and SMB look significant
since they co-move, to a certain extent, to that omitted factor although they would not be relevant if
the omitted factor was included. The solution in this application is to include other factors that are
more appropriate to proxy for the risk exposure of the fund. Given the investment objective of the fund,
we could consider including as an additional risk factor the MSCI Emerging Markets (EM) Index. In
terms of correlation between the EM factor and the Fama-French factors, the results below indicate that
there is a strong positive correlation with the US-equity market and by smaller correlations with SMB
(positive) and HML (negative).

MKT SMB HML
0.69 0.26 -0.14

It seems thus reasonable to include the EM factor as an additional risk factor to explain the performance
of ODMAX. The Table below shows the estimation results of a regression of ODMAX excess monthly
returns on 4 factors, the EM factor in addition to the FF factors.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3716 0.2326 1.60 0.112
EEM 0.7234 0.0642 11.26 <2e-16 ***
MKT 0.1938 0.0822 2.36 0.019 *
SMB 0.1554 0.0877 1.77 0.078 .
HML 0.0200 0.0632 0.32 0.752
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not surprisingly, the estimated exposure to EM is 0.72 and highly significant, whilst the exposure to
the FF factors has declined significantly. In particular, adding EM to the regression has the effect of
reducing the coefficient of the MKT from 1.04 to 0.19. The drop in the MKT beta is due to the fact
that in the first regression part of the coefficient of MKT was actually proxing for the effect of EM. The
estimate from the first regression of 1.04 is biased because it captures both the effect of MKT on ODMAX,
but also represents a good proxy for the omitted source of risk of the EM Index, given the large and
positive correlation between MKT and EM. The effect of omitted variables and the resulting bias in the
coefficient estimates is not only an econometric issue, but it has important practical implications. If we
use the LRM for performance attribution, that is, disentangling the systematic component of the fund
return (beta) from the risk-adjusted part (alpha), then omitting some relevant risk factors has the effect
of producing bias in the remaining coefficients and thus changes our conclusion about the contribution of
each component to the performance of the fund. Typically, for mutual funds we have a clear idea of the
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investment strategy and the type of risks that the asset returns are exposed to. However, hedge funds
are less transparent about their investment strategy and it might be difficult to pick the right factors and
the coefficient estimates might be biased.

3.6.1 A simulation exercise

We can perform a simulation to illustrate the effect of omitted variables in producing biased coefficient
estimates. The steps of the simulation are as follows:

1. We will assume that the dependent variable Yt (for t = 1, · · · , T ) is generated by the following
model:

Yt = 0.5 ∗ X1,t + 0.5 ∗ X2,t + ϵt

where the factors X1,t and X2,t are simulated from the (multivariate) normal distribution with
mean 0 and variance 1 for both variables, with their correlation set equal to ρ. The error term ϵt is
also normally distributed with mean 0 and standard deviation 0.5. In the context of this simulation
exercise, the model above for Yt represents the true model with the population parameter values
equal to β0 = 0 and β1 = β2 = 0.5.

2. We then estimate by OLS the following model:

Yt = β0 + β1X1,t + ηt

where we intentionally omit the factor X2,t from the regression. Notice that X2,t is both a relevant
variable to explain Yt (since β2 = 0.5) and it is correlated with X1,t if we set ρ ̸= 0

3. We repeat step 1-2 S times and store the estimate of β1

We can then analyze the properties of β̂1, the estimate of β1, by, for example, plotting a histogram of the
S values obtained in the simulation. If omitting X2,t does not introduce bias in the estimate of β1, then
we expect the histogram to be centered at the true value of the parameter 0.5. Instead, the histogram
will be shifted away from the true value of the parameter if the omission introduces bias. The code below
starts by setting the values of the parameters, such as the number of simulations, length of the time
series, and the parameters of the distributions. Then the for loop iterates S times step 1 and 2 described
above, while the bottom part of the program plots the histogram.
library(MASS) # this package is needed for function `mvrnorm()` to simulate from the

# multivariate normal distribution

S <- 1000 # set the number of simulations
T <- 300 # set the number of periods
mu <- c(0,0) # mean of variables X1 and X2
cor <- 0.7 # correlation coefficient between X1 & X2
Sigma <- matrix(c(1,cor,cor,1), 2, 2) # covariance matrix of X = [X1, X2]
beta <- c(0.5, 0.5) # slope coefficient of X = [X1, X2]
eps <- rnorm(T, 0, 0.5) # errors

betahat <- matrix(NA, S, 1) # vector to store the estimates of beta1
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for (i in 1:S) # loop starts here
{ # simulate the indep. variable X = [X1, X2]
X <- mvrnorm(T, mu, Sigma) # `mvnorm` from package MASS simulate the

# multivariate normal distribution (dim: Nx2)
Y <- beta[1]*X[,1] + beta[2] * X[,2] + eps# simulate the dep. variable Y (dim: Nx1)
fit <- lm(Y ~ X[,1]) # fit the linear model of Y on X1 but not X2
betahat[i] <- coef(fit)[2] # store the estimated coefficient of X1

} # loop ends here

# set the limits of the x-axis
xmin <- min(min(betahat), 0.3)
xmax <- max(betahat)
ymax <- 13

# plot the histogram of betahat together with a vertical line at the true value of beta
ggplot() + geom_histogram(aes(betahat, y = ..density..), bins=50, fill="white", color="black") +

xlim(c(xmin, xmax)) + ylim(c(0,ymax)) + geom_vline(xintercept = beta[1], col="red", size=1) +
annotate("text", label = "true value", x = beta[1]+0.1, y =11, size = 5, colour = "red") +
labs(x="",title="Histogram of estimated beta")
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In the simulation exercise we set the correlation between X1,t and X2,t equal to 0.7 (line cor = 0.7) and
it is clear from the histogram above that the distribution of the OLS estimate is shifted away from the
true value of 0.5. This illustrates quite well the problem of omitted variable bias: we expect the estimates
of β1 to be close to the true value of 0.5, but we find that these estimates range from 0.75 to 0.95. This
bias does not disappear using longer samples since it is due to the fact that we omitted a relevant variable
that is highly correlated with an included variable. If the omitted variable was relevant but uncorrelated
with the included variable, then the histogram of the OLS estimates would look like the following plot
that is produced with the same code used above, but by setting cor = 0.
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Figure 3.17: the Morningstar Investment Style Box

R commands

Table 3.14: R functions used in this Chapter.

annotate() coeftest() geom_abline() mean() rbind() spread()
apply() colnames() inner_join() median() read_excel() summary.lm()
arrange() download() kable() mvrnorm() rnorm() which.min()

as.yearmon() gather() lm() NeweyWest() sapply() NA

Table 3.15: R packages used in this Chapter.

downloader lmtest readxl tidyr
knitr MASS sandwich NA

Exercises

1. Use the dataset of Welch and Goyal (2008) to investigate the predictability of stock returns at the
quarterly and monthly frequency:
• Plot the scatter plot of the DP ratio and the equity premium at the quarterly and monthly

frequency
• Estimate the linear regression model of the future equity premium on the DP ratio using Newey-

West standard errors. Is there evidence of predictability?
2. Morningstar is an investment advisory company that has developed a style box to classify US equity

mutual funds as shown in Figure 3.17 and a detailed discussion is discussed in this factsheet. The
style box is a popular tool to assess the characteristics of a mutual fund and it is provided in the
profile page of a mutual fund in Yahoo Finance.

https://corporate.morningstar.com/US/documents/MethodologyDocuments/FactSheets/MorningstarStyleBox_FactSheet_.pdf
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Figure 3.18: Relationship between the VIX and the cumulative SP 500 return in the following 6-month.
The linear and cubic regressions are also shown.

Answer the following questions: - Use the Fama-French 3-factor model to classify three of the following
mutal funds in the style box - Check the name and profile in Yahoo Finance or Morningstar to compare
your analysis
RFV RZG RWJ EZY PFM PXSV EQL SCHA PXSG MDYG
PFM SPHQ PWV VB RWJ PWC PDP DES VTI PXSC
VIG NDQ MDY RWK DEF GVT FAD VOE SLY EZM
EES VIG SPY FAB MGK PKW PWB FVI PXSG SCHV
EZM DWAQ FVD FTC VYM RWV PEY SCHA FDV SDY

3. Adrian et al. (2015) use a cubic polynomial to model the relationship between the VIX in month t

and the cumulative return of the S&P500 Index in the following 6-months, that is,

Rt:t+6 = β0 + β1V IXt + β2V IX2
t + β3V IX3

t + ϵt

where Rt:t+6 = log(Rt+6) − log(Rt). Answer the following questions:
• Estimate the model using the tickers ˆGSPC and ˆVIX for the two assets starting from January 1990

at the monthly frequency
• What is the expect return in the 6-months following a VIX value of 55%?
• Test the null hypothesis that the model is linear
• Test the null hypothesis that the model is quadratic as opposed to cubic
• Produce a graph similar to Figure 3.18 and comment the results
• Remove the two monthly observations when the VIX index was higher than 50% and estimate the

model on the remaining observations and answer the following questions:
– is the shape of the cubic regression line different?
– What is the expect return in the 6-months following a VIX value of 55%? Compare with the

earlier result
– Do you reject the null of linearity?
– Is the cubic term signficant?
– What is your conclusion about the robustness of the analysis on the full sample?

4. Consider the 10 size portfolios. Estimate the CAPM and the 3-factor model on sub-periods of 10
years



Chapter 4

Time Series Models

The goal of the LRM of the previous Chapter is to relate the variation (over time or in the cross-section)
of variable Y with that of an explanatory variable X. Time series models assume that the independent
variable X is represented by past values of the dependent variable Y . We typically denote by Yt the value
of a variable in time period t (e.g., days, weeks, and months) and Yt−1 refers to the value of the variable
in the previous time period relative to today (i.e., t). More generally, Yt−k (for k ≥ 1) indicates the value
of the variable k periods before t. The notation ∆Yt refers to the one-period change in the variable, that
is, ∆Yt = Yt − Yt−1, while ∆kYt = Yt − Yt−k represents the change over k periods of the variable. The
aim of time series models can be stated as follows: is there useful information in the current and past
values of a variable to predict its future?

4.1 The Auto-Correlation Function (ACF)

A first exploratory tool that is used in time series analysis is the Auto-Correlation Function (ACF) that
represents the correlation coefficient between the variable Yt and its lagged value Yt−k (hence the Auto
part). We denote the sample correlation coefficient at lag k by ρ̂k that is calculated as follows:

ρ̂k =
∑T

t=1(Yt − Ȳ )(Yt−k − Ȳ )/T

σ̂2
Y

where Ȳ and σ̂2
Y denote the sample mean and variance of Yt. The auto-correlation is bounded between

± 1 with positive values indicating that values of Yt−k above/below the mean µY are more likely to be
associated with values of Yt above/below the mean. In this sense, positive correlation means that the
variable has some persistence in its fluctuations around the mean. On the other hand, negative values
represent a situation in which the variable is more likely to reverse its past behavior. The ACF is called
a function because ρ̂k is typically calculated for many values of k. The R function to calculate the ACF is
acf() and in the example below we apply it to the monthly returns of the S&P 500 Index from January
1990 until September 2017. The acf() function requires to specify the lag.max that represents the
maximum value of k to use and the option plot that can be set to TRUE if the ACF should be plotted or
FALSE if the estimated values should be returned.

85
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library(quantmod)
sp.data <- getSymbols("^GSPC", start="1990-01-01", auto.assign=FALSE)
spm <- Ad(to.monthly(sp.data))
names(spm) <- "price" # rename the column "price" from "..Adjusted"
spm$return <- 100 * diff(log(spm$price)) # create the returns
spm <- na.omit(spm) # drops the first observation that is NA
# plot the ACF function
acf(spm$ret, lag.max=12, plot=TRUE)
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The function provides a graph with the horizontal axis representing the lag k (starting at 0 and expressed
as a fraction of a year) and the vertical axis representing the value of ρ̂k. The horizontal dashed lines are
equal to ±1.96/

√
T and represent the confidence interval for the null hypothesis that the autocorrelation

is equal to 0. If the auto-correlation at lag k is within the interval we conclude that we fail to reject the
null that the auto-correlation coefficient is equal to zero (at 5% level). The plot produced by acf() uses
the default R plotting function, although we might prefer a more customized and elegant graphical output
using the ggplot2 package. This package does not provide a ready-made function to plot the ACF1, but
we can easily solve this problem by creating a data frame that contains the lag k and the estimate of the
auto-correlation ρ̂k and pass it to ggplot() function for plotting. The code below provides an example
of how to produce a ggplot of the ACF.
Tm = length(spm$return)
spm.acf <- acf(spm$return, lag.max=12, plot=FALSE)
spm.acf <- data.frame(lag= 0:12, acf = spm.acf$acf)

library(ggplot2)
ggplot(spm.acf, aes(lag, acf)) +

geom_bar(stat="identity", fill="orange") +
geom_hline(yintercept = 1.96 * Tm^(-0.5), color="steelblue3", linetype="dashed") +
geom_hline(yintercept = -1.96 * Tm^(-0.5), color="steelblue3", linetype="dashed") +
theme_classic()

1However, the autoplot() function of package ggfortify builds on the ggplot2 functionalities to provide an ACF plot.
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The analysis of monthly returns for the S&P 500 Index shows that the auto-correlations are quite small
and only few of them are statistically different from zero at 5% (such as lags 1, 4, 6). The ACF results
indicate that there is very weak dependence in monthly returns so that lagged values might not be very
useful in forecasting future returns. The conclusion is not very different when considering the daily
frequency. The code below uses the dataset downloaded earlier to create a data frame spd with the
adjusted closing price and the return at the daily frequency. In addition, we can exploit the flexibility of
ggplot2 to write a function to perform the task. In the example below, the function ggacf is created
that takes the following arguments:

• y is a numerical vector that represents a time series
• lag represents the maximum lag to calculate the ACF; if not specified, the default is 12
• plot.zero takes values yes/no if the user wants to plot the autocorrelation at lag 0 (which is always

equal to 1); the default is no
• alpha the significance level for the confidence bands in the graph; default is 0.05

spd <-merge(Ad(sp.data), 100*ClCl(sp.data))
names(spd) <- c("price","return")
spd <- na.omit(spd)
# a function to plot the ACF using ggplot2
ggacf <- function(y, lag = 12, plot.zero="no", alpha = 0.05)
{
T <- length(y)

y.acf <- acf(y, lag.max=lag, plot=FALSE)
if (plot.zero == "yes") y.acf <- data.frame(lag= 0:lag, acf = y.acf$acf)
if (plot.zero == "no") y.acf <- data.frame(lag= 1:lag, acf = y.acf$acf[-1])

library(ggplot2)
ggplot(y.acf, aes(lag, acf)) +
geom_bar(stat="identity", fill="orange") +
geom_hline(yintercept = qnorm(1-alpha/2) * T^(-0.5), color="steelblue3", linetype="dashed") +
geom_hline(yintercept = qnorm(alpha/2) * T^(-0.5), color="steelblue3", linetype="dashed") +
geom_hline(yintercept = 0, color="steelblue3") +
theme_classic() + ylab("") + ggtitle("ACF")

}
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Figure 4.1: Auto-Correlation Function (ACF) for the daily returns of the SP 500.
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Figure 4.2: Auto-correlation function of absolute (left) and square (right) daily returns of the SP 500.

# use the function
ggacf(spd$return, lag=25)

There are 2686 daily returns in the sample so that the confidence band in Figure 4.1 is narrower around
zero and several auto-correlations are significantly different from 0 (at 5% signficance level). Interestingly,
the first order correlation is negative and significant suggesting that daily returns have a weak tendency
to reverse the previous day change. A stylized fact is that daily returns are characterized by small auto-
correlations, but large values of ρ̂k when the returns are in absolute value or squared. Figure 4.2 shows
the ACF for the absolute and squared daily returns up to lag 100 days:
p1 <- ggacf(abs(spd$return), 100)
p2 <- ggacf(spd$ret^2, 100)

These plots make clear that the absolute and square returns are significantly and positively correlated and
that the auto-correlations decay very slowly as the lag increases. This shows that large (small) absolute
returns are likely to be followed by large (small) absolute returns since the magnitude of the returns is
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auto-correlated rather than their direction. This pattern is consistent with the evidence that returns
display volatility clusters that represent periods of high volatility that can last several months, followed
by long periods of lower volatility. This suggests that volatility (in the sense of absolute or squared
returns) is persistent and strongly predictable, while returns are weakly predictable. We will discuss this
topic and volatility models in the next Chapter.

4.2 The Auto-Regressive (AR) Model

The evidence in the ACF indicates that lagged values of the returns or absolute/square returns might be
informative about the future value of the variable itself and we would like to incorporate this information in
a regression model. The Auto-Regressive (AR) model is a regression model in which the independent
variables are lagged values of the dependent variable Yt. If we include only one lag of the dependent
variable, we denote the model by AR(1) which is given by

Yt = β0 + β1Yt−1 + ϵt

where β0 and β1 are coefficients to be estimated and ϵt is an error term with mean zero and variance
σ2

ϵ . More generally, the AR(p) model might include p lags of the dependent variable to account for the
possibility that information relevant to predict Yt is dispersed over several lags. The AR(p) model is given
by

Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + ϵt

The properties of the AR(p) model are:

• E(Yt|Yt−1, · · · , Yt−p) = β0 + β1Yt−1 · · · + βpYt−p: the expected value of Yt conditional on the recent
p realizations of the variable can be interpreted as a forecast since only past information is used to
produce an expectation of the variable today.

• E(Yt) = β0/(1 − β1 − · · · − βp): represents the unconditional expectation or the long-run mean of
Yt

E(Yt) = β0 + β1E(Yt−1) + · · · + β2E(Yt−p) + E(ϵt)
= β0

1−
∑p

j=1
βj

assuming that E(Yt) = E(Yt−k) for all values of k. If the sum of the slopes βi, for i = 1,· · ·, p, is
equal to one the mean is not defined.

• V ar(Yt) = σ2
ϵ /(1 − β2

1 − · · · − β2
p) since

var(Yt) = β2
1V ar(Yt−1) + · · · + β2

2V ar(Yt−p) + V ar(ϵt)
=

(∑p
j=1 β2

j

)
V ar(Yt) + σ2

ϵ

= σ2
ϵ

1−
∑p

j=1
β2

j

where V ar(Yt) = V ar(Yt−k) for all values of k.
• The sum of the slopes βi is interpreted as a measure of persistence of the time series; persistence

measures the extent that past values above/below the mean are likely to persist above/below the
mean in the current period.



90 CHAPTER 4. TIME SERIES MODELS

The concept of persistence is also related to that of mean-reversion which measures the speed at which
a time series reverts back to its long-run mean. The higher the persistence of a time series the longer it
will take for deviations from the long-run mean to be absorbed. Persistence is associated with positive
values of the sum of the betas, while negative values of the coefficients imply that the series fluctuates
closely around the mean. This is because a value above the mean in the previous period is expected to
be below the mean in the following period, and viceversa for negative values. In economics and finance
we typically experience positive coefficients due to the persistent nature of economic shocks, although the
daily returns considered above are a case of first-order negative auto-correlation.

4.2.1 Estimation

The AR model can be estimated using the OLS estimation method, but there are also alternative es-
timation methods, such as Maximum Likelihood (ML). Although both OLS and ML are consistent in
large sample, estimating an AR model with these methods might provide slightly different results (see
Tsay (2005) for a more extensive discussion of this topic). There are various functions available in R to
estimate time series models and we will discuss three of them below. While the first consist of using the
lm() function and thus uses OLS in estimation, the functions ar() and arima() are specifically targeted
for time series models and have ML as the default estimation method. Let’s estimate an AR(12) model
on the S&P 500 return at the monthly frequency.

lm()

The first approach is to use the lm() function discussed in the previous chapter together with the dyn
package that gives lm() the capabilities to handle time series data and operations, such as the lag()
and diff() operators. The estimation is implemented below2:
library(dyn)
fit <- dyn$lm(return ~ lag(return, 1:12), data = spm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4012 0.409 0.982 0.328
lag(return, 1:12)1 0.1709 0.097 1.763 0.081
lag(return, 1:12)2 -0.0325 0.098 -0.330 0.742
lag(return, 1:12)3 0.1581 0.098 1.617 0.109
lag(return, 1:12)4 0.1493 0.098 1.527 0.130
lag(return, 1:12)5 0.0031 0.098 0.031 0.975
lag(return, 1:12)6 -0.2120 0.098 -2.167 0.033
lag(return, 1:12)7 -0.0707 0.098 -0.724 0.471
lag(return, 1:12)8 0.1213 0.098 1.238 0.219
lag(return, 1:12)9 -0.1157 0.097 -1.187 0.238
lag(return, 1:12)10 0.0475 0.097 0.488 0.627
lag(return, 1:12)11 0.0439 0.097 0.451 0.653
lag(return, 1:12)12 0.0073 0.096 0.076 0.939

2Since time series models explicitly account for time series dependence the errors of a well-specified model are likely
to have no serial correlation. This suggests that the need to correct the standard errors is less compelling, although it is
the case that heteroskedasticity might still play a role. In this Chapter the errors are obtained under the assumption of
homoskedasticity which is the default output of summary().
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The Table with the results is in the familiar format from the previous chapter. The estimate of the sum
of the coefficients of the lagged values is 0.27 which is not very high. This suggests that the monthly
returns have weak persistence and that it is difficult to predict the return next month by only knowing
the return for the current month. In terms of significance, at 5% level the only lag that is significant
is 6 (with a negative coefficient), while the third lag is significant at 10%. The lack of persistence in
financial returns at high-frequencies (intra-daily or daily), but also at lower frequencies (weekly, monthly,
quarterly), is well documented and it is one of the stylized facts of returns common across asset classes.

ar()

Another function that can be used to estimate AR models is the ar() from the tseries package. The
inputs of the function are the series Yt, the maximum order or lag of the model, and the estimation
method. An additional argument of the function is aic that can be TRUE/FALSE. This option refers to
the Akaike Information Criterion (AIC) that is a method to select the optimal number of lags in the AR
model and will be discussed in more detail below. The code below shows the estimation results for an
AR(12) model when the option aic is set to FALSE3:
# estimation method "mle" for ML and "ols" or OLS
ar(spm$return, method="ols", aic=FALSE, order.max=12, demean = FALSE, intercept = TRUE)

Call:
ar(x = spm$return, aic = FALSE, order.max = 12, method = "ols", demean = FALSE, intercept = TRUE)

Coefficients:
1 2 3 4 5 6 7 8 9 10 11 12

0.171 -0.032 0.158 0.149 0.003 -0.212 -0.071 0.121 -0.116 0.047 0.044 0.007

Intercept: 0.401 (0.385)

Order selected 12 sigma^2 estimated as 16.2

Since I opted for method="ols" the coefficient estimates are equal to the one obtained above with the
lm() command. A problem with this function is that it does not provide the standard errors of the
estimates. To evaluate their statistical significance we can obtain the standard errors of the estimates
and calculate the t-statistics for the null hypothesis that the coefficients are equal to zero:
data.table <- data.frame(COEF = fit.ar$ar,

SE = fit.ar$asy.se.coef$ar,
TSTAT = fit.ar$ar /fit.ar$asy.se.coef$ar,
PVALUE = pnorm(-abs(fit.ar$ar /fit.ar$asy.se.coef$ar)))

COEF SE TSTAT PVALUE
1 0.171 0.091 1.871 0.031
2 -0.032 0.093 -0.351 0.363

3The option demean means that by default the ar() function subtracts the mean from the series before estimating the
regression. In this case, the ar() function estimates the model Yt − Ȳ = β1 ∗ (Yt−1 − Ȳ ) + ϵt without an intercept. If we
denote the expected value of Yt by µ, then using the previous equation we can express the intercept as β0 = (1 − β1)µ.
By replacing this value for β0 in the AR(1) model we obtain Yt = (1 − β1)µ + β1Yt−1 + ϵt that can be rearranged as
Yt − µ = β1(Yt−1 − µ) + ϵt. So, estimating the AR model or the AR model in deviation from the mean leads to the same
estimate of β1.
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3 0.158 0.092 1.716 0.043
4 0.149 0.092 1.620 0.053
5 0.003 0.092 0.033 0.487
6 -0.212 0.092 -2.300 0.011
7 -0.071 0.092 -0.768 0.221
8 0.121 0.092 1.314 0.094
9 -0.116 0.092 -1.260 0.104
10 0.047 0.092 0.518 0.302
11 0.044 0.092 0.479 0.316
12 0.007 0.090 0.081 0.468

where we can see that only the third and sixth lags are significant at 5%. The standard errors are close
but not equal to the values obtained for lm().

arima()

The third function that can be used to estimate AR model is arima(). The function is more general
relative to the previous one since it is able to estimate time series models called Auto-Regressive Integrated
Moving Average (ARIMA) models. In this Chapter we will not discuss MA processes, and postpone the
presentation of the Integrated part to a later Section of the Chapter. We can use the arima() to estimate
the AR(p) model and the results shown below are similar in magnitude to the those obtained earlier:
# default estimation method is "ML", for OLS set method="CSS"
arima(spm$return, order=c(12, 0, 0))

Call:
arima(x = spm$return, order = c(12, 0, 0))

Coefficients:
ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 ar10 ar11 ar12 intercept

0.182 -0.041 0.13 0.148 0.018 -0.190 -0.065 0.100 -0.123 0.039 0.053 0.007 0.43
s.e. 0.088 0.089 0.09 0.089 0.089 0.089 0.089 0.089 0.088 0.088 0.088 0.088 0.47

sigma^2 estimated as 15.7: log likelihood = -358, aic = 745

The coefficient estimates in this case are slightly different from the previous results since the default
estimation method in this case is ML instead of OLS.

4.2.2 Lag selection

The most important modeling question when using AR(p) models is the choice of the lag order p. This
choice is made by estimating the AR model for many values of p, e.g. from 0 to pmax, and then select the
order that minimizes a criterion. A popular criterion is the Akaike Information Criterion (AIC) that is
similar to the adjusted R2 calculated for LRM, but with a different penalization term for the number of
parameters included in the model. The Akaike Information Criterion (AIC) is calculated as

AIC(p) = log(RSS/T ) + 2 ∗ (1 + p)/T

where RSS is the Residual Sum of Squares of the model, T is the sample size, and p is the lag order of
the AR model. The AIC is calculated for models with different p and the lag selected is the one that
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minimizes the criterion. This is done automatically by the function ar() when setting the argument
aic=TRUE and the results are shown below for the monthly and daily returns:
ar(spm$return, aic=TRUE, order.max=24, demean = FALSE, intercept = TRUE)
ar(spd$return, aic=TRUE, order.max=24, demean = FALSE, intercept = TRUE)

Call:
ar(x = spm$return, aic = TRUE, order.max = 24, demean = FALSE, intercept = TRUE)

Coefficients:
1 2 3 4 5 6

0.181 -0.053 0.158 0.152 0.010 -0.213

Order selected 6 sigma^2 estimated as 17.3

Call:
ar(x = spd$return, aic = TRUE, order.max = 24, demean = FALSE, intercept = TRUE)

Coefficients:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.106 -0.060 0.012 -0.037 -0.047 0.002 -0.029 0.020 -0.014 0.034 -0.016 0.033 0.002 -0.042 -0.047
16 17 18 19 20 21

0.046 0.011 -0.060 0.007 0.040 -0.030

Order selected 21 sigma^2 estimated as 1.59

The AIC has selected lag 6 for the monthly returns and 21 for the daily returns. However, a criticism
against AIC is that it tends to select large models, that is, models with a large number of lags. In the case
of the monthly returns, the ACF showed that they are hardly predictable based on the weak correlations
and yet AIC suggests to use information up to 6 months earlier to predict next month returns. As for
the daily returns, the order selected is 21 which seems large given the scarse predictability of the time
series. An alternative criterion that can be used to select the optimal lag is the Bayesian Information
Criterion (BIC) which is calculated as follows:

BIC(p) = log(RSS/T ) + log(T ) ∗ (1 + p)/T

The only difference with AIC is that the number of lags in the model is multiplied by log(T ) (instead of
2 for AIC). For time series with 8 or more observations the BIC penalization is larger relative to AIC
and will lead to the selection of fewer lags. Unfortunately, the function ar() uses only the AIC and does
not provide results for other selection criteria. The package FitAR provides the SelectModel() function
that does the selection according to the criterion specified by the user, for example AIC or BIC. Below
is the application to the monthly returns of the S&P 500 Index where the spm$ret is transformed to a
ts object using as.ts() which is the time series type required by this function:
library(FitAR)
SelectModel(as.ts(spm$return), lag.max=24, Criterion="AIC")
SelectModel(as.ts(spm$return), lag.max=24, Criterion="BIC")

p AIC-Exact AIC-Approx
1 6 371 -2.6
2 7 373 -1.8
3 8 374 -1.6
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p BIC-Exact BIC-Approx
1 0 380 5.8
2 1 381 9.6
3 2 385 11.1

BIC indicates the optimal lag is 0 while AIC selects 6. This is expected since BIC requires a larger
improvement in fit to justify including additional lags. Also when considering the top 3 models, AIC
chooses larger models relative to BIC.
SelectModel(as.ts(spd$return), lag.max=24, Criterion="AIC")
SelectModel(as.ts(spd$return), lag.max=24, Criterion="BIC")

p AIC-Exact AIC-Approx
1 21 1269 -60
2 20 1270 -60
3 22 1270 -58
p BIC-Exact BIC-Approx

1 2 1310 -12.9
2 1 1315 -19.7
3 3 1317 -6.8

At the daily frequency, the order selected by the two criteria is remarkably different: AIC suggests to
include 21 lags of the dependent variable, while BIC only 2 days. In general, it is not always the case that
more parsimonious models are preferable to larger models, although when forecasting time series it is
preferable since they provide more stable forecasts. Adding the argument Best=1 to the SelectModel()
function returns the optimal order.

4.3 Forecasting with AR models

One of the advantages of AR models is that they are very suitable to produce forecasts about the future
value of the series. Let’s assume that the current time period is t and we observe the current observation.
Assuming that we are using an AR(1) model, the forecast for the value of Yt+1 is given by

Ê(Yt+1|Yt) = β̂0 + β̂1 ∗ Yt

where β̂0 and β̂1 are the estimates of the parameters. If we want to forecast the variable two steps ahead,
then the forecast is given by

Ê(Yt+2|Yt) = β̂0 + β̂1 ∗ Ê(Yt+1|Yt) = β̂0(1 + β̂1) + β2
1 ∗ Yt

The formula can be generalized to forecasting k steps ahead which is given by

Ê(Yt+k|Yt) = β̂0

 k∑
j=1

β̂k−1
1

+ β̂k
1 ∗ Yt

Let’s forecast the daily and monthly returns of the S&P 500 Index. We already discussed how to select
and estimate an AR model so that we need only to discuss how to produce the forecasts Yt+k with k

representing the forecast horizon. The functions predict() and forecast() (from package forecast)
calculate the forecast based on a estimation object and the forecast horizon k. The code below shows
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Table 4.1: Point and interval forecast for the monthly returns of the SP 500 Index starting in Sep 2017
and for 12 months ahead.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Sep 11 0.42 -5.1 6 -8.1 8.9
Oct 11 0.42 -5.1 6 -8.1 8.9
Nov 11 0.42 -5.1 6 -8.1 8.9
Dec 11 0.42 -5.1 6 -8.1 8.9
Jan 12 0.42 -5.1 6 -8.1 8.9
Feb 12 0.42 -5.1 6 -8.1 8.9

Table 4.2: Point and interval forecast for the daily returns of the SP 500 Index starting in 2017-09-01
and for 12 days ahead.

Point Forecast Lo 50 Hi 50 Lo 90 Hi 90
2687 -0.028 -0.88 0.83 -2.1 2.1
2688 0.024 -0.84 0.89 -2.1 2.1
2689 0.034 -0.83 0.90 -2.1 2.1
2690 0.029 -0.83 0.89 -2.1 2.1
2691 0.029 -0.84 0.89 -2.1 2.1
2692 0.029 -0.83 0.89 -2.1 2.1

how to perform these three steps and produce 6-step ahead forecast, in addition to print a table with the
results.
bic.monthly <- SelectModel(as.ts(spm$return), lag.max = 24, Criterion = "BIC", Best=1)
fit.monthly <- arima(spm$return, order = c(bic.monthly, 0, 0))
forecast.monthly <- forecast::forecast(fit.monthly, h = 6) # h is the forecast horizon
knitr::kable(as.data.frame(forecast.monthly), digits=4, caption=paste("Point and interval forecast for the monthly

returns of the SP 500 Index starting in", end(spm)," and for 12 months ahead."))

bic.daily <- SelectModel(as.ts(spd$return), lag.max = 24, Criterion = "BIC", Best=1)
fit.daily <- arima(spd$return, order = c(bic.daily, 0, 0))
forecast.daily <- forecast::forecast(fit.daily, h = 6, level=c(50,90))
knitr::kable(as.data.frame(forecast.daily), digits=4, caption=paste("Point and interval forecast for the daily

returns of the SP 500 Index starting in", end(spd)," and for 12 days ahead."))

The Table of the S&P 500 forecasts at the monthly frequency shows that they are equal at all horizons.
This is due to the fact that BIC selected order 0 and in this case the forecast is given by Ê(Yt+k|Yt) =
β̂0 = µ̂Y , where µ̂Y represents the sample average of the monthly returns. However, at the daily frequency
the order selected is 2, and the forecasts start from a different value but rapidly converge toward the
sample average of the daily returns. Visualizing the forecasts and the uncertainty around the forecast is
a useful tool to understand the strength and the weakness of the forecasts. Figure 4.3 shows the forecast,
the forecast intervals around the forecast, and the time series that is being forecast4.

4The number of past observations that are plotted can be changed by setting the option include= to the number of
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Figure 4.3: Point and interval forecasts for the monthly (left) and daily (right) returns of the SP 500
Index

library(ggfortify)
plot.monthly <- autoplot(forecast.monthly)
plot.daily <- autoplot(forecast.daily, include=50) + theme_classic() +

geom_hline(yintercept = 0, color="hotpink3",alpha = 0.5)
grid.arrange(plot.monthly, plot.daily, ncol=2)

Let’s consider a different example. Assume that we want to produce a forecast of the growth rate of real
GDP for the coming quarters using time series models. This can be done as follows:

• download from FRED the time series of real GDP with ticker GDPC1
• transform the series to percentage growth rate
• select the order p∗ using BIC
• estimate the AR(p∗) model
• produce the forecasts

As an example, assume that we are interested in forecasting the growth rate of GDP in the following
quarter. Figure 4.4 shows the most recent 100 quarter of the real GDP growth rate until April 2017
together with 4 quarters of point and interval forecasts. The model forecasts that the GDP growth will
moderately increase in the future quarters and that there is approximately 25% probability that output
growth becomes negative.
gdp.level <- getSymbols("GDPC1", src="FRED", auto.assign=FALSE)
gdp.growth <- 100 * diff(log(gdp.level)) %>% na.omit
gdp.p <- SelectModel(as.ts(gdp.growth), lag.max=12, Criterion="BIC", Best=1)
gdp.fit <- arima(gdp.growth, order=c(gdp.p, 0,0))
gdp.forecast <- forecast::forecast(gdp.fit, h=4, level=c(50,75,90))
autoplot(gdp.forecast, include=50) + theme_classic() + geom_hline(yintercept = 0, color="hotpink3")

observations that the user intends to show.
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Figure 4.4: The growth rate of real GDP at the quarterly frequency.

4.4 Seasonality

Seasonality in a time series represents a regular pattern of higher/lower realizations of the variable in
certain periods of the year. A seasonal pattern for daily data is represented by the 7 days of the week, for
monthly data by the 12 months in a year, and for quarterly data by the 4 quarters in a year. For example,
electricity consumption spikes during the summer months while being lower in the rest of the year. Of
course there are many other factors that determine the consumption of electricity which might change
over time, but seasonality captures the characteristic of systematically higher/lower values at certain
times of the year. As an example, let’s assume that we want to investigate if there is seasonality in the
S&P 500 returns at the monthly frequency. To capture the seasonal pattern we use dummy variables
that take value 1 in a certain month and zero in all other months. For example, we define the dummy
variable JANt to be equal to 1 if month t is January and 0 otherwise, FEBt takes value 1 every February
and it is 0 otherwise, and similarly for the remaining months. We can then include the dummy variables
in a regression model, for example,

Yt = β0 + β1Xt + γ2FEBt + γ3MARt + γ4APRt + γ5MAYt+

γ6JUNt + γ7JULt + γ8AUGt + γ9SEPt + γ10OCTt + γ11NOVt + γ12DECt + ϵt

where Xt can be lagged values of Yt and/or some other relevant independent variable. Notice that in
this regression we excluded one dummy variable (in this case JANt) to avoid perfect collinearity among
the regressors (dummy variable trap). The coefficients of the other dummy variables should then be
interpreted as the expected value of Y in a certain month relative to the expectation in January, once
we control for the independent variable Xt. There is an alternative way to specify this regression which
consists of including all 12 dummy variables and excluding the intercept:

Yt = β1Xt + γ1JANt + γ2FEBt + γ3MARt + γ4APRt + γ5MAYt+

γ6JUNt + γ7JULt + γ8AUGt + γ9SEPt + γ10OCTt + γ11NOVt + γ12DECt + ϵt

The first regression is typically preferred because a test of the significance of the coefficients of the 11
monthly dummy variables provides evidence in favor or against seasonality. The same hypothesis could
be evaluated in the second specification by testing that the 12 parameters of the dummy variables are
equal to each other.
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We can create the seasonal dummy variables by first defining a variable sp.month using the month()
function from package lubridate which identifies the month for each observation in a time series object
either with a number from 1 to 12 or with the month name. For example, for the monthly S&P 500
returns we have:
sp.month <- lubridate::month(spm$return, label=TRUE)
head(sp.month, 12)

[1] Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

We can then use the model.matrix() function that simply converts the qualitative variable sp.month
to a matrix of dummy variables with one column for each month and value 1 when the date of the
observation is in each of the months. The code below shows how to convert the sp.month variable to the
matrix of dummy variables sp.month.mat:
sp.month.mat <- model.matrix(~ -1 + sp.month)
colnames(sp.month.mat) <- levels(sp.month)
head(sp.month.mat, 8)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0 0 0

To illustrate the use of seasonal dummy variables we consider a simple example in which the monthly
return of the S&P 500 is regressed on the 12 monthly dummy variables. As discussed before, to avoid
the dummy variable trap the regression models does not include the intercept in favor of including the
12 dummy variables. The model is implemented as follows:
fit <- lm(spm$return ~ -1 + sp.month.mat)

Estimate Std. Error t value Pr(>|t|)
sp.month.matJan -1.782 1.4 -1.298 0.197
sp.month.matFeb 0.586 1.3 0.448 0.655
sp.month.matMar 2.373 1.3 1.814 0.072
sp.month.matApr 2.347 1.3 1.794 0.075
sp.month.matMay 0.082 1.3 0.063 0.950
sp.month.matJun -1.404 1.3 -1.073 0.285
sp.month.matJul 1.757 1.3 1.342 0.182
sp.month.matAug -0.816 1.3 -0.623 0.534
sp.month.matSep -0.035 1.3 -0.027 0.979
sp.month.matOct 0.543 1.4 0.396 0.693
sp.month.matNov 0.144 1.4 0.105 0.916
sp.month.matDec 1.150 1.4 0.838 0.404

The results indicate that, in most months, the expected return is not significantly different from zero,
except for March and April. In both cases the coefficient is positive which indicates that in those
months it is expected that returns are higher relative to the other months. To develop a more intuitive
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understanding of the role of the seasonal dummies, the graph below shows the fitted or predicted returns
from the model above. In particular, the expected return of the S&P 500 in January is -1.78%, that is,
E(Rt|JANt = 1) = -1.78, while in February the expected return is E(Rt|FEBt = 1) = 0.59% and so on.
These coefficients are plotted in the graph below and create a regular pattern that is expected to repeat
every year:
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Returns seems to be positive in the first part of the year and then go into negative territory during the
summer months only to return positive toward the end of the year. However, keep in mind that only
March and November are significant at 10%. We can also add the lag of the S&P 500 return to the model
above to see if the significance of the monthly dummy variables changes and to evaluate if the goodness
of the regression increases:
fit <- dyn$lm(return ~ -1 + lag(return, 1) + sp.month.mat, data = spm)

Estimate Std. Error t value Pr(>|t|)
lag(return, 1) 0.201 0.092 2.201 0.030
sp.month.mat1 -2.014 1.357 -1.484 0.141
sp.month.mat2 1.225 1.363 0.899 0.371
sp.month.mat3 2.255 1.291 1.746 0.083
sp.month.mat4 1.869 1.308 1.428 0.156
sp.month.mat5 -0.390 1.308 -0.299 0.766
sp.month.mat6 -1.421 1.290 -1.101 0.273
sp.month.mat7 2.039 1.297 1.573 0.119
sp.month.mat8 -1.170 1.300 -0.900 0.370
sp.month.mat9 0.129 1.292 0.100 0.921
sp.month.mat10 0.555 1.353 0.410 0.683
sp.month.mat11 0.035 1.354 0.026 0.980
sp.month.mat12 1.121 1.353 0.828 0.409

The -1 in the lm() formula is introduced when we want to exclude the intercept from the model.

Seasonality is a common characteristics of macroeconomic variables. Typically, we analyze these variables
on a seasonally-adjusted basis, which means that the statistical agencies have already removed the seasonal
component from the variable. However, they also provide the variables before the adjustment as in the
case of the Department Stores Retail Trade series (FRED ticker RSDSELDN) at the monthly frequency.
The time series graph for this variable from January 1992 is shown below.
library(quantmod)
deptstores <- getSymbols("RSDSELDN", src="FRED", auto.assign = FALSE)
qplot(time(deptstores), deptstores, geom="line") +
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labs(x=NULL, y=NULL, title="Retail Trade: Department Stores", caption="Source: FRED") + theme_bw()
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The seasonal pattern is quite clear in the data and it seems to happen toward the end of the year. We
can conjecture that the spike in sales is probably associate with the holiday season in December, but we
can test this hypothesis by estimating a linear regression model in which we include monthly dummy
variables as explanatory variables to account for this pattern. The regression model for the sales in $ of
department stores, denoted by Yt, is

Yt = β0 + β1Yt−1 + γ2FEBt + γ3MARt + γ4APRt + γ5MAYt+

γ6JUNt + γ7JULt + γ8AUGt + γ9SEPt + γ10OCTt + γ11NOVt + γ12DECt + ϵt

where, in addition to the monthly dummy variables, we have the first order lag of the variable. The
regression results are shown below:
dept.month.mat <- model.matrix(~ -1 + dept.month)
colnames(dept.month.mat) <- levels(dept.month)
fit <- arima(deptstores, order=c(1,0,0), xreg = dept.month.mat[,-1])

Call:
arima(x = deptstores, order = c(1, 0, 0), xreg = dept.month.mat[, -1])

Coefficients:
ar1 intercept Feb Mar Apr May Jun Jul Aug Sep Oct

0.916 12633.434 717.578 2679.593 2586.464 3482.078 2830.702 2343.121 3696.211 2035.781 3233.145
s.e. 0.023 568.858 161.805 217.716 252.645 274.951 287.737 292.344 289.376 277.676 255.967

Nov Dec
7099.968 16212.121

s.e. 221.148 164.707

sigma^2 estimated as 684981: log likelihood = -2499.13, aic = 5026.26



4.4. SEASONALITY 101

10000

20000

30000

1995 2000 2005 2010 2015

Retail Trade: Department Stores

Source: FRED

Figure 4.5: Retail trade and fitted value from the time series model.

The results indicate the retail sales at department stores are highly persistent with an AR(1) coefficient
of 0.916. To interpret the estimate of the seasonal coefficients, notice that the dummy for the month of
January was left out so that all other seasonal dummies should be interpreted as the difference in sales
relative to the first month of the year. The results indicate that all coefficients are positive and thus
retail sales are higher than January. From the low levels of January, sales seems to increase and remain
relative stable during the summer months, and then increase significantly in November and December.
Figure 4.5 of the variable and the model fit (springgreen4 dashed line).
ggplot() + geom_line(aes(time(deptstores), deptstores),color="gray60", size=0.8) +

geom_line(aes(time(deptstores), fitted(fit)), color="springgreen4", linetype=2) +
theme_classic() + labs(x=NULL, y=NULL, title="Retail Trade: Department Stores", caption="Source: FRED")

So far we estimated the model and compared the realization of the variable with the prediction or fitted
value of the model. In practice, it is useful to perform an out-of-sample exercise which consist of estimating
the model up to a certain date and forecast the future even though we observe the realization for the
out-of-sample period. This simulates the situation of a forecaster that in real-time observes only the
past and is interested to forecast the future. Figure 4.6 shows the results of an out-of-sample exercise in
which an AR(4) model with seasonal dummies is estimated with data up to December 2014 and forecasts
are produced from that date onward. The blue line shows the forecast, the shaded areas the 80% and
95% forecast intervals, and the red line represents the realization of the variable. In the first part of
the out-of-sample period, the forecasts underpredicted the realization of sales, but underpredicted the
peak of sales at the end of the year. In the second year, the forecasts during the year were closer to the
realization, but again the model overpredicted end-of-year sales.
library(forecast)
index = sum(time(deptstores) < "2014-12-31")
dept.insample <- window(deptstores, end = "2014-12-31")
month.insample <- dept.month.mat[1:index,]
dept.outsample <- window(deptstores, start = "2014-12-31")
month.outsample <- dept.month.mat[(index+1):length(dept.month),]
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Figure 4.6: Out-of-sample forecast of Retail Trade starting in December 2014 and for forecast horizons 1
to 31 .

fit <- arima(dept.insample, order = c(4,0,0), xreg = month.insample[,-1])
autoplot(forecast(fit, h = length(dept.outsample), xreg = month.outsample[,-1]), include=50) +

theme_classic() +
geom_line(aes((index+1):(index+length(dept.outsample)), dept.outsample), color="red")

4.5 Trends in time series

A trend is defined as the tendency of an economic or financial time series to grow over time. Examples
are provided in Figure 4.7 that shows the real Gross Domestic Product (FRED ticker: GDPC1) and the
S&P 500 index (YAHOO ticker: ˆGSPC) at the quarterly frequency.
gdp.level <- getSymbols("GDPC1", src="FRED", auto.assign=FALSE)
sp.level <- getSymbols("^GSPC", src="yahoo", auto.assign=FALSE, from="1947-01-01")
macrodata <- merge(gdp.level, Ad(to.monthly(sp.level)))
names(macrodata) <- c("GDP","SP500")
macrodata.q <- to.quarterly(macrodata, OHLC = FALSE)
p1 <- ggplot(macrodata.q) + geom_line(aes(time(macrodata.q), GDP), alpha=0.4) + theme_classic() +

labs(x=NULL, y=NULL, title="GDP", caption="Source: FRED")
p2 <- ggplot(macrodata.q) + geom_line(aes(time(macrodata.q), SP500), alpha=0.4) + theme_classic() +

labs(x=NULL, y=NULL, title="SP 500", caption="Source: Yahoo")

The series have in common the feature of growing over time with no tendency to revert back to the mean.
Actually, the trending behavior of the variables implies that the mean of the series is also increasing
over time rather than being approximately constant. For example, if we were to estimate the mean
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Figure 4.7: Real GDP (FRED: GDPC1) and the Standard and Poors 500 Index at the quarterly frequency
starting in January 1947. Bottom graphs are in logarithmic scale.

of GDP and the S&P 500 in 1985 it would not have been a good predictor of the future value of the
mean because the variables kept growing over time. This type of series are called non-stationary since
some features of the distribution (e.g., the mean and/or the variance) change over time instead of being
constant as it is the case for stationary processes. For the variables in the Figure, we can thus conclude
that they are clearly non-stationary. In addition, very often in economics and finance we prefer to take
the natural logarithm of the variables which makes exponential growth approximately linear. The same
variables discussed above are plotted in natural logarithm in Figure 4.7. Taking the log of the variables
is particularly relevant for the S&P 500 Index which shows a considerable exponential behavior, at least
until the end of the 1990s.

4.5.1 Deterministic Trend

A simple approach to model the non-stationarity of these time series is to assume that they follow a
deterministic trend, which we can assume that it is linear as a starting point. We thus assume that the
series Yt evolves according to the model

Yt = β0 + β1 ∗ t + dt

where the deviation dt is a zero mean stationary random variable (e.g., an AR(1) process). The indepen-
dent variable, denoted t, represents the time trend and takes value 1 for the first observation, value 2 for
the second observation and value T for the last observation5. This model decomposes the series Yt in two
components:

5Any sequence of numbers can constitute a trend as long as the difference between consecutive values is 1.
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Figure 4.8: Linear trend model for the real GDP and the SP500.

• a permanent (non-stationary) component represented by β0 + β1 ∗ t that captures the long-run
growth of the series

• a transitory (stationary) component dt that captures the deviations from the long-run trend (e.g.,
business cycle fluctuations)

This type of trend is called deterministic since it makes the prediction that every time period the series
Yt is expected to increase by β1 units. It is often referred as the trend-stationary model after the two
components that constitute the model. The model can be estimated by OLS using the lm() function:
macrodata.q$trend <- 1:nrow(macrodata.q) # creates the trend variable
fit.gdp <- lm(log(GDP) ~ trend, data=macrodata.q)

(Intercept) trend
GDP 7.77688 0.00783
SP500 3.08968 0.01725

where the estimate of β1 is 0.0078 and indicates that real GDP is expected to grow 0.78% every quarter6.
For the S&P 500 β̂1 = 0.0173 and represents a quarterly growth of 1.73%. The application of the linear
trend model to the series shown above gives as a result the dashed trend line shown in Figure 4.8:
fit.gdp <- lm(log(GDP) ~ trend, data=macrodata.q)
fit.sp500 <- dyn$lm(log(SP500) ~ trend, data=macrodata.q)

p1 <- ggplot(macrodata.q) + geom_line(aes(time(macrodata.q), log(GDP)), alpha=0.4) +
geom_line(aes(time(macrodata.q), fitted(fit.gdp)), color="red", linetype="dashed")

p2 <- ggplot(macrodata.q) + geom_line(aes(time(macrodata.q), log(SP500)), alpha=0.4) +
geom_line(aes(time(macrodata.q), fitted(fit.sp500)), color="red", linetype="dashed")

p1 <- p1 + theme_classic() + labs(x=NULL,y=NULL, title="GDP", caption="Source: FRED")

The deviation of the series from the fitted trend line are small for GDP, but for the S&P 500 index they
are persistent and last for long periods of time (i.e., 10 years or even longer). Such persistent deviations

6We multiply the coefficient by 100 and give a percentage interpretation because the dependent variable is in logarithm
but the independent is linear.
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Figure 4.9: Linear and cubic trend model for the real GDP and the SP500.

might be due to the inadequacy of the linear trend model and the need to consider a nonlinear trend.
This can be accommodated by adding a quadratic and/or cubic term to the linear trend model which
becomes:

Yt = β0 + β1 ∗ t + β2 ∗ t2 + β3 ∗ t3 + dt

where t2 and t3 represent the square and cube of the trend variable. The implementation in R requires
the only additional step of including the square and cube of trend in the lm() formula:
fitsq <- lm(log(GDP) ~ trend + I(trend^2), data=macrodata.q)
fitcb <- lm(log(GDP) ~ trend + I(trend^2) + I(trend^3), data=macrodata.q)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.6611 0.0064 1204.1189 0
trend 0.0104 0.0001 95.7755 0
I(trend^2) 0.0000 0.0000 -24.3167 0

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.6928 0.0080 956.2543 0.0000
trend 0.0090 0.0003 35.0520 0.0000
I(trend^2) 0.0000 0.0000 1.5317 0.1268
I(trend^3) 0.0000 0.0000 -5.8996 0.0000

The linear (dashed line) and cubic (dot-dash line) deterministic trends are shown in Figure 4.9. For the
case of GDP the differences between the two lines is not visually large, although the quadratic and/or
cubic regression coefficients might be statistically significant at conventional levels. In terms of fitness,
the AIC of the linear model is -732.16 and -1045.44 and -1076.64 for the quadratic and cubic models,
respectively. Hence, in this case we would select the cubic model which does slightly better relative to
the quadratic, and significantly better relative to the linear trend model7. However, it could be argued
that the deterministic trend model might not represent well the behavior of the S&P 500 index since
there are significant departures of the series from the trend models for long periods of time.

Another way to visualize the ability of the trend-stationary model to explain these series is to plot the
residuals or deviation from the cubic trend, dt. Figure 4.10 shows the time series graph of the dt for the

7The best model is the one that minimizes AIC and BIC.
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Figure 4.10: Deviation of the logarithm of real GDP and SP 500 from the linear and cubic trend model
and its ACF up to lag 50.

linear and cubic models and the ACF functions with lag up to 50 (quarters for GDP and months for S&P
500):
p1 <- qplot(time(macrodata.q), residuals(fitcb.gdp), data=macrodata.q, geom="line", color="Cubic") +

geom_line(aes(time(macrodata.q), residuals(fit.gdp), color="Linear"), linetype="dashed") +
geom_hline(yintercept = 0, color="orchid4") + labs(title="GDP") +
scale_colour_manual("", breaks=c("Cubic","Linear"), values=c("steelblue2","darkorange4"))

p2 <- qplot(time(macrodata.q), residuals(fitcb.sp500), data=macrodata.q, geom="line", color="Cubic") +
geom_line(aes(time(macrodata.q), residuals(fit.sp500), color="Linear"), linetype="dashed") +
geom_hline(yintercept = 0, color="orchid4") + labs(title="SP500") +
scale_colour_manual("", breaks=c("Cubic","Linear"), values=c("steelblue2","darkorange4"))

p3 <- ggacf(residuals(fitcb.gdp), 50) + labs(title="GDP", subtitle="Cubic")
p4 <- ggacf(residuals(fit.gdp), 50)+ labs(title="GDP", subtitle="Linear")
p5 <- ggacf(residuals(fitcb.sp500), 50) + labs(title="SP500", subtitle="Cubic")
p6 <- ggacf(residuals(fit.sp500), 50) + labs(title="SP500", subtitle="Linear")
mylayout <- rbind(c(1,1,2,2),

c(3,4,5,6))
grid.arrange(p1, p2, p3, p4,p5, p6, layout_matrix=mylayout)

The ACF shows clearly that the deviation of the log GDP from the cubic trend is persistent but with
rapidly decaying values relative to the residuals of the linear trend model. On the other hand, for the
S&P 500 it seems that the serial correlation decays at a slower rate, that might be an indication of a
non-stationary time series. Even when we account for the trend in a variable, the deviation from the
trend dt might still be non-stationary and we will discuss later how to formally test this hypothesis.
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4.5.2 Stochastic Trend

An alternative model that is often used in asset and option pricing is the random walk with drift model.
The model takes the following form:

Yt = µ + Yt−1 + ϵt

where µ is a constant and ϵt is an error term with mean zero and variance σ2. The random walk
model assumes that the expected value of Yt is equal to the previous value of the series (Yt−1) plus a
constant term µ (which can be positive or negative), that is, E(Yt|Yt−1) = µ + Yt−1. The model can
also be reformulated by substituting backward the value of Yt−1, that is, µ + Yt−2 + ϵt−1 and we obtain
Yt = 2 ∗ µ + Yt−2 + ϵt + ϵt−1. We can then continue by substituting Yt−2, Yt−3, and so on until we reach
the initial value Y0 and the model can be written as

Yt = µ + Yt−1 + ϵt

= µ + (µ + Yt−2 + ϵt−1) + ϵt

= µ + µ + (µ + Yt−3 + ϵt−2) + ϵt−1 + ϵt

= · · ·

= Y0 + µt +
t∑

j=1
ϵt−j+1

This shows that a random walk with drift model can be expressed as the sum of two components (in
addition to the starting value Y0):

• deterministic trend (µt)
• the sum of all past errors/shocks to the series

In case the drift term µ is set equal to zero, the model reduces to Yt = Yt−1 + ϵt = Y0 +
∑t

j=1 ϵt−j+1

which is called the random walk model (without drift since µ is equal to zero). Hence, another way to
think of the random walk model with drift is as the sum of a deterministic linear trend and a random
walk process.
The relationship between the trend-stationary and the random walk with drift models becomes clear if
we assume that the deviation from the trend dt follow an AR(1) process, that is, dt = ϕdt−1 + ϵt, where ϕ

is the coefficient of the first lag which is assumed to be smaller than 1 in absolute value and ϵt is a mean
zero random variable. We can do backward substitution of the AR term in the trend-stationary model,
that is,

Yt = β0 + β1t + dt

+ ϕdt−1 + ϵt

+ ϕ2dt−2 + ϕ ∗ ϵt−1 + ϵt

+ ...

+ ϵt + ϕ ∗ ϵt−1 + ϕ2 ∗ ϵt−2 + · · · + ϕt−1ϵ1

+
t∑

j=1
ϕj−1ϵt−j+1



108 CHAPTER 4. TIME SERIES MODELS

Comparing this equation with the one obtained for the random walk with drift model we find that the
former is a special case of the latter for ϕ = 1. Hence, the only difference between these models consists
of the assumption on the persistence of the deviation from the trend. If the coefficient ϕ is less than
1 the deviation is stationary and thus the trend-stationary model can be used to de-trend8 the series
and then conduct the analysis on the deviation. However, when ϕ = 1 the deviation from the trend as
well is non-stationary (i.e., random walk) and the approach just described is not valid. We will discuss
later what to do in this case. A more practical way to understand the issue of the (non-)stationarity
of the deviation from the trend is to think in terms of the speed at which the series is likely to revert
back to the trend-line. Series that oscillate around the trend are stationary while persistent deviations
from the trend (slow reversion) are an indication of non-stationarity. How do we know if a series (e.g.,
the deviation from the trend) is stationary or not? In the following section we will discuss a test that
evaluates this hypothesis and provides guidance as to what modeling approach to take.
The previous analysis of real GDP shows that the deviations of GDP from its trend seem to revert to the
mean faster relative to the other two series: this can be seen both in the time series plot and also from the
quickly decaying ACF. The estimate of the trend-stationary model shows that we expect GDP to grow
around 0.774% per quarter (approximately 3.096% annualized), although GDP alternates periods above
trend (expansions) and periods below trend (recessions). Alternating between expansions and recessions
captures the mean-reverting nature of the GDP deviations from the long-run trend. We can evaluate the
ability of the trend-stationary model to capture the expansion-recession feature of the business cycle by
comparing the periods of positive and negative deviations with the peak and trough dates of the business
cycle decided by the NBER dating committee. In the graph below we plot the deviation from the cubic
trend estimated earlier together with the shaded areas that indicate the period of recessions.
# dates from the NBER business cycle dating committee
xleft = c(1953.25, 1957.5, 1960.25, 1969.75, 1973.75, 1980,

1981.5, 1990.5, 2001, 2007.917) # beginning
xright = c(1954.25, 1958.25, 1961, 1970.75, 1975, 1980.5, 1982.75,

1991, 2001.75, 2009.417) # end

#fitgdp is the lm() object for the cubic trend model
ggplot() + geom_rect(aes(xmin=xleft, xmax=xright, ymin=rep(-0.10,10), ymax=rep(0.10, 10)),fill="lightcyan3") +

geom_hline(yintercept = 0, color="grey35", linetype="dashed") +
geom_line(aes(time(macrodata.q), residuals(fitcb.gdp))) +
theme_classic() + labs(x=NULL, y=NULL)

Overall, there is a tendency for the deviation to sharply decline during recessions (shaded areas), and
then increase during the recovery period and the expansion, which seems to have last longer since the
mid-1980s.
Earlier we discussed that the distribution of a non-stationary variable changes over time. We can verify the
stationarity properties of the trend-stationary model and the random walk with drift model by deriving
the mean and variance of Yt. Under the trend-stationary model the dynamics follows Yt = β0 + β1t + dt

and we can make the simplifying assumption that dt = ϕdt−1 + ϵt with ϵt a mean zero and variance σ2
ϵ

error term. Based on these assumptions, we obtain that E(dt) = 0 and V ar(dt) = σ2
ϵ /(1 − ϕ2) so that:

• Et(Yt) = β0 + β1t

8De-trending means running a regression of Yt on the trend variable and analyze the residuals of this regression.

http://www.nber.org/cycles/main.html
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Figure 4.11: Deviation of the log real GDP from a cubic trend. The shaded areas represent the NBER
recession periods.

• V art(Yt) = V ar(dt) = σ2
ϵ /(1 − ϕ2)

This demonstrates that the mean of a trend-stationary variable is a function of time and not constant,
while the variance is constant. On the other hand for the random walk with drift model9 we have that:

• Et(Yt) = Et

(
Y0 + µt +

∑t
j=1 ϵt−j+1

)
= Y0 + µt

• V art(Yt) = tσ2
ϵ

From these results we see that for the random walk with drift model both the mean and the variance are
time varying, while for the trend-stationary model only the mean varies with time.

The main difference between the trend-stationary and random walk with drift models thus consists in the
non-stationarity properties of the deviations from the deterministic trend. For the trend-stationary model
the deviations are considered stationary and they can be analysed using regression models estimated by
OLS. However, for the random walk with drift the deviations are non-stationary and its time series cannot
be considered in regression models because of several statistical issues that will be discussed in the next
Section, followed by a discussion of an approach to statistically test if a series is non-stationary and
non-stationary around a (deterministic) trend.

4.5.3 Why non-stationarity is a problem for OLS?

The estimation of time series models can be conducted by standard OLS techniques, as long as the series
is stationary. If this is the case, the OLS estimator is consistent and t-statistics are distributed according
to the Student t distribution. However, these properties fail to hold when the series is non-stationary
and three problems arise:

1. the OLS estimate of the AR coefficients is biased in small samples
2. the t statistic is not normally distributed (even in large samples)
3. the regression of a non-stationary variables on a non-stationary variable leads to spurious results of

dependence between the two series

We will discuss and illustrate these problems in the context of a simulation study using R. To show the
first fact we follow the steps:

9In the derivation that follows we assume that Y0 is constant similarly to β0 for the trend-stationary model.
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Figure 4.12: Simulated distribution of the OLS estimate of the AR(1) coefficient when the true generating
process is a random walk with drift. Sample size is 25 for the left plot and 500 for the right plot.

1. simulate B time series from a random walk with drift model Yt = µ + Yt−1 + ϵt for t = 1, · · · , T

2. estimate an AR(1) model Yt = β0 + β1 ∗ Yt−1 + ϵt

3. store the B OLS estimates of β1

We perform this simulation for a short and a long time series (T = 25 and T = 500, respectively) and
compare the mean, median, and histogram of the β̂1 across the B simulations. Below is the code for
T = 25 and the histogram of the simulated values for T = 25 and 500 is provided in Figure 4.12:
set.seed(1234)

T = 25 # length of the time series
B = 1000 # number of simulation
mu = 0.1 # value of the drift term
sigma = 1 # standard deviation of the error
beta25 = numeric(B) # object to store the DF test stat

for (b in 1:B)
{
Y <- as.xts(arima.sim(n=T, list(order=c(0,1,0)), mean=mu, sd=sigma))
fit <- dyn$lm(Y ~ lag(Y,1)) # OLS estimation of DF regression
beta25[b] <- summary(fit)$coef[2,1] # stores the results

}

# plotting
p1 <- ggplot() + geom_histogram(aes(beta25),color="grey35", fill="grey90", bins=40) + theme_bw() + labs(x=NULL,y=NULL) +

geom_vline(xintercept = 1, color="cadetblue", size=1.2, linetype="dashed")

T = 500 # length of the time series
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Figure 4.13: Simulated distribution of t-statistic of the OLS estimate of the AR(1) coefficient when the
true generating process is a random walk with drift. Sample size is 500.

The histogram when the sample size is 25 shows that the β̂1 over 1000 simulations ranges between 0.5
and 0.5 with a mean of 0.5 and median of 0.5. Both the mean and the median are significantly smaller
relative to the true value of 1. This demonstrates the bias in the OLS estimates in small samples when
the variable is non-stationary. However, this bias has a tendency to decline for larger sample sizes as
shown in the right histogram of Figure 4.12 where the sample size is set to 500. In this case the min/max
estimates are 0.5 and 0.5 with a mean and median of 0.5 and 0.5, respectively. For the larger sample
of 500 periods, even though the series is non-stationary, the coefficient estimates of β1 are close to the
theoretical value of 1 and thus there is no bias.

The second fact that arises when estimating AR by OLS when variables are non-stationary is that the t
statistic does not follow the normal distribution even when samples are large. This can be seen clearly
in Figure 4.13 for the statistic of the null hypothesis that β1 = 1 and for T=500. The histogram below
shows that the distribution of t statistic is shifted to the left relative to the standard normal distribution.

The third problem with non-stationary variables occurs when the interest is to model is the relationship
between X and Y and both variables are non-stationary. This could lead to spurious results of statistical
evidence of a relationship between the two series when indeed they are independent of each other. An
intuitive explanation for this result can be provided when considering, e.g., two independent random walk
with drift: estimating a LRM finds co-movement between the series due to the existence of a trend in
both variables that makes the series move in the same or opposite direction. The simulation below shows
more intuitively this results for two independent processes X and Y with the same drift parameter µ,
but independent of each other (i.e., Y is not a function of X). The histogram of the t statistics for the
significance of β1 in Yt = β0 + β1Xt + ϵt is shown in the left plot of Figure 4.14, while the R2 of the
regression is shown on the right. The distribution of the t test statistic has a significant positive mean
and would lead to an extremely large number of rejections of the hypothesis that β1 = 0, when its true
value is equal to zero. In addition, the distribution of the R2 shows that in the vast majority of these 1000
simulations we would find a moderate to large goodness-of-fit measure which would suggest a significant
relationship between the two variables, although the truth is that there is no relationship.
T = 500 # length of the time series
B = 1000 # number of simulation
mu = 0.1 # value of the drift term
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Figure 4.14: Simulated distribution of the t-statistic and R square for the regression of two independent
non-stationary variables. Sample size is 500.

sigma = 1 # standard deviation of the error
tstat = numeric(B) # object to store the DF test stat
R2 = numeric(B)
for (b in 1:B)
{
Y <- as.xts(arima.sim(n=T, list(order=c(0,1,0)), mean=mu, sd=sigma)) # simulates the Y series
X <- as.xts(arima.sim(n=T, list(order=c(0,1,0)), mean=mu, sd=sigma)) # simulates the X series

fit <- lm(Y ~ X) # OLS estimation of DF regression
fit.tab <- summary(fit)$coefficients
tstat[b] <- fit.tab[2,3] # stores the results
R2[b] <- summary(fit)$r.square

}

p1 <- ggplot() + geom_histogram(aes(tstat),color="grey35", fill="grey90", binwidth=5) +
theme_bw() + labs(x="t-statistic",y=NULL) +
geom_vline(xintercept = 0, color="cadetblue", size=1.2, linetype="dashed")

p2 <- ggplot() + geom_histogram(aes(R2),color="grey35", fill="grey90", binwidth=0.05) +
xlim(c(-0.2, 1.2)) + theme_bw() + labs(x="R squared",y=NULL)

grid.arrange(p1, p2, ncol=2)

4.5.4 Testing for non-stationarity

The first task when analyzing economic and financial time series is to evaluate if the variable can be
considered stationary or not, since non-stationarity leads to several inferential problems that can be
problematic for our analysis. Once we conclude that a time series is non-stationary we need to decide
whether it is consistent with a trend-stationary model or rather with a random walk model (with or
without drift). So, what we are really asking are two questions: is the time series stationary or non-
stationary? and if it non-stationary, which of the two models discussed earlier is more likely to be
consistent with the data?
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The approach that we follow is to combine the trend-stationary and random walk models and test hy-
pothesis about the coefficients of the combined model that provide answers to the previous questions.
The trend-stationary model with an AR(1) process for the deviation is defined as

Yt = β0 + β1t + dt

dt = ϕdt−1 + ϵt

from the first Equation we obtain that dt−1 = Yt−1 − β0 − β1(t − 1) so that we can replace dt in the first
Equation and formulate the model in terms of t and Yt−1, that is:

Yt = β0 + β1t + ϕdt−1 + ϵt

= β0 + β1t + ϕ [Yt−1 − β0 − β1(t − 1)] + ϵt

= β0(1 − ϕ) + ϕβ1 + β1(1 − ϕ)t + ϕYt−1 + ϵt

if we set γ0 = β0(1 − ϕ) + ϕβ1 and γ1 = β1(1 − ϕ) then the model becomes

Yt = γ0 + γ1t + ϕYt−1 + ϵt

and the null hypothesis that we want to test is that ϕ = 1 against the alternative that ϕ < 1. Notice that
if ϕ1 = 1 then γ1 = 0 and the model becomes Yt = β1 + Yt−1 + ϵt, which is the random walk with drift
model. Testing the hypothesis can lead to the two following outcomes:

• Failing to reject the null hypothesis that ϕ = 1 (and γ1 = 0) indicates that Yt follows the random
walk with drift model

• Rejecting the null hypothesis in favor of the alternative that ϕ < 1 supports the trend-stationary
model

If the time series Yt does not show a clear pattern of growing over time, we can assume that β1 = 0 which
simplifies the model to Yt = γ0 + ϕYt−1 + ϵt with γ0 = β0(1 − ϕ). Testing the hypothesis that ϕ = 1 in
this case provides the following results:

• Failing to reject H0 implies that the model is Yt = Yt−1 + ϵt that represents the random walk
without drift model

• Rejecting the null hypothesis suggests that Yt should be modeled as a stationary AR process

The important choice to make is whether to include a trend (i.e., β1) or not in the testing Equation. While
for the real GDP and the S&P 500 in Figure 4.7 it is clear that a trend is necessary, in other situations
(e.g., the unemployment rate or interest rates) a trend might not be warranted. To test H0 : ϕ = 1 (non-
stationarity) against the alternative H1 : ϕ < 1 (stationarity) the model is reformulated by subtracting
Yt−1 to both the left and right hand-side of the Equation:

Yt − Yt−1 = γ0 + γ1t + ϕYt−1 − Yt−1 + ϵt

∆Yt = γ0 + γ1t + δYt−1 + ϵt

with δ = ϕ − 1. Testing the null that ϕ = 1 is equivalent to testing δ = 0 in this model against the
alternative that δ < 0. This model is estimated by OLS and the test statistic for what is called the
Dickey-Fuller (DF) test is given by the t-statistic of δ̂, that is,

DF = δ̂

σ̂δ
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Figure 4.15: Simulated distribution of the DF test statistic and the t distribution. Sample size 100.

where σ̂δ represents the standard error of δ̂ assuming homoskedasticity. Even though subtracting Yt−1

makes the LHS of the Equation stationary, under the null hypothesis the regressor Yt−1 is non-stationary
and leads to the distribution of the DF not being t distributed. Instead, it follows a different distribution
with critical values that are tabulated and are provided below.

The non-standard distribution of the DF test statistic can be investigated via a simulation study using
R. The code below performs a simulation in which:

• random walk time series (with drift) are generated
• the DF regression equation is estimated
• the t-statistic of Yt−1 is stored

These steps are repeated B times and Figure 4.15 shows the histogram of the DF statistic together with
the Student t distribution with T-1 degree-of-freedom (T represents the length of the time series set in
the code).
T = 100 # length of the time series
B = 1000 # number of simulation
mu = 0.1 # value of the drift term
sigma = 1 # standard deviation of the error

DF = numeric(B) # object to store the DF test stat
for (b in 1:B)
{
Y <- as.xts(arima.sim(n=T, list(order=c(0,1,0)), mean=mu, sd=sigma))
fit <- dyn$lm(diff(Y) ~ lag(Y,1)) # OLS estimation of DF regression
DF[b] <- summary(fit)$coef[2,3] # stores the results

}
# plotting
ggplot(data=data.frame(DF), aes(x=DF)) +

geom_histogram(aes(y=..density..), bins=50, fill="grey90", color="steelblue1") +
stat_function(fun = dt, colour = "dodgerblue4", args = list(df = (T-1))) +
theme_classic() + xlim(-6,6)

The graph shows clearly that the distribution of the DF statistic does not follow the t distribution: it has
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a negative mean and median (instead of 0), it is slightly skewed to the right (positive skewness) rather
than being symmetric, and its empirical 5% quantile is -2.851 instead of the theoretical value of -1.66.
Since we are performing a one-sided test against the alternative hypothesis H1 : δ < 0, using the one-sided
5% critical value from the t distribution would lead to reject the null hypothesis of non-stationarity too
often relative to the appropriate critical values of the DF statistic. For the simulation exercise above,
the (asymptotic) critical value for the null of a random walk with drift is -2.86 at 5% significance level.
The percentage of simulations for which we reject the null based on this critical value and that from the
t distribution are
c(DF = sum(DF < -2.86) / B, T = sum(DF < -1.67) / B)

DF T
0.049 0.390

This shows that using the critical value from the t-distribution would lead to reject too often (39% of the
times) relative to the expected level of 5%. Instead, using the correct critical value the null is rejected
4.9% which is quite close to the 5% significance level.

In practice, it is advisable to include lags of ∆Yt to control for serial correlation in the time series Yt

and its changes. This is called the Augmented Dickey Fuller (ADF) and requires to estimate the
following regression model (for the case with a constant):

∆Yt = γ0 + γ1t + δYt−1 +
p∑

j=1
ωj∆Yt−j + ϵt

which is simply adding lags of ∆Yt on the RHS of the previous Equation. The ADF test statistic is
calculated as before by taking the t-statistic of the coefficient estimate of Yt−1, that is, ADF = δ̂/σ̂δ.
The decision to reject the null hypothesis that δ = 0 against the alternative that δ < 0 relies on comparing
the DF or ADF test statistic with the appropriate critical values. As discussed earlier, the DF statistic
has a special distribution and critical values have been tabulated for the case with/without a constant
and with/without a trend and for various sample sizes. Below you can find the critical values obtained
for various sample sizes for a model with constant and with or without trend and the null is rejected if
the test statistic is smaller relative to the critical value:

Table 4.3: Critical values for Augmented Dickey-Fuller (ADF) test
with and without a trend

Sample Size Without Trend With Trend

1% 5% 1% 5%
T = 25 -3.75 -3.00 -4.38 -3.60
T = 50 -3.58 -2.93 -4.15 -3.50
T = 100 -3.51 -2.89 -4.04 -3.45
T = 250 -3.46 -2.88 -3.99 -3.43
T = 500 -3.44 -2.87 -3.98 -3.42
T = ∞ -3.43 -2.86 -3.96 -3.41

There are several packages that provide functions that perform the ADF test on a time series. The
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package tseries provides the adf.test() function that assumes a model with constant and trend and
the user is only required to specify the time series and the lags of ∆Yt. The application to the logarithm
of real GDP discussed above gives the following results10:
library(tseries)
adf.test(log(macrodata.q$GDP), k=4)

Augmented Dickey-Fuller Test

data: log(macrodata.q$GDP)
Dickey-Fuller = -1.039, Lag order = 4, p-value = 0.931
alternative hypothesis: stationary

The ADF test statistic is equal to -1.039 with a p-value of 0.931 which is larger than 5% and we thus
conclude that we do not reject the hypothesis that δ = 0 or, equilevantly, ϕ = 1. Hence, the logarithm
of GDP is not stationary even when including a trend in the analysis and a random walk with drift is
the most appropriate modeling choice. The code below shows the application of the ADF test to the
logarithm of the S&P 500 and the returns at the monthly and daily frequency:
adf.sp <- rbind(`Price monthly` = adf.test(log(spm$price))[c("statistic", "p.value")],

`Return monthly` = adf.test(spm$return)[c("statistic", "p.value")],
`Price daily` = adf.test(log(spd$price))[c("statistic", "p.value")],
`Price daily` = adf.test(spd$return)[c("statistic", "p.value")])

statistic p.value
Price monthly -3.11727 0.112109
Return monthly -4.75214 0.01
Price daily -2.25721 0.469427
Price daily -14.4059 0.01

The results show that at the 5% level the null of non-stationarity is not rejected for the monthly and daily
price, but they are strongly rejected for the returns. This is expected since the returns are the growth
rate of the price variable and they exhibit very small auto-correlation and a constant long-run mean. A
problem with the adf.test() function is that it does not allow to change the type of test, in case we are
interested to run the test without the trend variable. In this case we can use the ur.df() function from
the urca package. Below is an application to the logarithm of the real GDP:
library(urca)
adf <- ur.df(log(macrodata.q$GDP), type="trend", lags=4) # type: "none", "drift", "trend"
summary(adf)

###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################

Test regression trend

10If the lag is not specified the function default is to use k = trunc((length(x) − 1)(1/3)), where x denotes the time series
object.
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Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:
Min 1Q Median 3Q Max

-0.03076 -0.00427 0.00045 0.00483 0.03373

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0779720 0.0682260 1.14 0.25
z.lag.1 -0.0091399 0.0087954 -1.04 0.30
tt 0.0000583 0.0000695 0.84 0.40
z.diff.lag1 0.3246143 0.0622132 5.22 3.7e-07 ***
z.diff.lag2 0.0992773 0.0653046 1.52 0.13
z.diff.lag3 -0.0423973 0.0645861 -0.66 0.51
z.diff.lag4 -0.0502209 0.0612288 -0.82 0.41
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00832 on 258 degrees of freedom
Multiple R-squared: 0.155, Adjusted R-squared: 0.136
F-statistic: 7.91 on 6 and 258 DF, p-value: 7.72e-08

Value of test-statistic is: -1.0392 13.0625 2.433

Critical values for test statistics:
1pct 5pct 10pct

tau3 -3.98 -3.42 -3.13
phi2 6.15 4.71 4.05
phi3 8.34 6.30 5.36

In this case the ADF test statistic is -1.039 which should be compared to the critical value at 5% -3.42
and we fail to reject the null hypothesis that the series is non-stationary so that we concluded that it
follows a random walk with drift model.

4.5.5 What to do when a time series is non-stationary

If the ADF test leads to the conclusion that a series is non-stationary then we need to understand if the
nature of the non-stationarity is a trend-stationary model or a random walk model (with or without a
drift). In the first case, the non-stationarity is solved by de-trending the series, which means that the
series is regressed on a time trend and the residuals of the regression are then interpreted as the deviation
from the long-run trend and modeled using time series techniques (e.g., AR). This approach is often used
for the logarithm of GDP and the deviation is interpreted as the output gap. However, in our results the
log of GDP is non-stationary even when including a trend which indicates that the deviation might also
be non-stationary. On the other hand, in case we find that the series follows a random walk model then
the solution to the non-stationarity is differencing the series and modeling ∆Yt = Yt − Yt−1. The reason
for this is that differencing the series removes the trend and this can be seen in the random walk with
drift model Yt = µ + Yt−1 + ϵt where by taking Yt−1 to the left-hand side results in ∆Yt = µ + ϵt. When
we consider returns of an asset prices we are differencing the price which, from a statistical perspective,
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is justified in order to induce stationarity in the price series.

4.6 Structural breaks in time series

Another issue that we need to keep in mind when analyzing time series is that there could have been a
shift (or structural change) in its mean or its persistence over time. The economy is an evolving system
changing over time which makes the past less relevant, to some extent, to understand the future. It is
important to be able to recognize structural change because it can be easily mistaken for non-stationarity
when indeed it is not.

Let’s assume that at time t∗ the intercept of a time series shifts so that we can write the AR(1) model as

Yt = β00 + β01 ∗ I(t > t∗) + β1 ∗ Yt−1 + ϵt

where β00 represents the intercept of the AR(1) model until time t∗, β00 + β01 after time t∗, and I(A)
denotes the indicator function that takes value 1 if A is true and 0 otherwise. In the above example we
assume that the dependence of the time series, measured by β1, is constant, although it might as well
change over time as we discuss later.

Let’s simulate a time series from this model with a shift in the intercept at observation 200 on a total
sample of length 400. To show the effect of an intercept shift we simulate a time series with a shift
of the intercept from β00=0 to β0,1=1, while the AR(1) parameters is constant and equal to 0.8. The
resulting time series is shown in Figure 4.16, with the horizontal line representing the unconditional
means before/after the break at the values β00/(1 − β1) and β01/(1 − β1), respectively. For this choice of
parameters it is clear that there was a shift at observation 200 when the unconditional mean of the time
series shifts from 0 to 5.
set.seed(1234)
T = 400; Tbreak <- round(T/2)
beta00 = 0; beta01 = 1
beta1 = 0.8; sigma.eps = 0.8
eps = sigma.eps * rnorm(T)
Y = as.xts(ts(numeric(T)))
for (t in 2:T) Y[t] = beta00 + beta01 * (t > Tbreak) + beta1 * Y[t-1] + eps[t]

A time series with structural change can be easily mistaken for non-stationarity. As it is clear from Figure
4.17, from the perspective of a linear trend model the simulate time series seems a good candidate for
such non-stationary behavior. Obviously, the trend model is misspecified and particularly irrelevant if
the interest is to build a model for forecasting since the trend model predicts that Y should increase by
0.02104 units per time period. However, there is no underlying drift in the model and in the future the
series will keep oscillating around its mean of 5 if not other break occurs.

4.6.1 Break at a know date

If the visual analysis of the time series shows the possibility of a break we can use that information and
incorporate it in the model. An example is the break in the simulated series in Figure 4.16 that shows
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Figure 4.16: Simulated AR(1) time series with a structural break in the intercept.
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Figure 4.17: A linear trend model estimated on the simulated AR(1) time series with a structural break
in the intercept.
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a level shift half-way through the sample. We can estimate an AR(1) model with an intercept shift at
observation 200 as follows:
fit <- dyn$lm(Y ~ I(trend > Tbreak) + lag(Y, 1), data=merge(Y,trend))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.039 0.058 -0.681 0.496
I(trend > Tbreak)TRUE 1.030 0.166 6.220 0.000
lag(Y, 1) 0.813 0.027 29.928 0.000

The regression results show that the OLS estimate of β̂00 is equal to -0.039 which is not statistically
different from the true value 0, while β̂0,1 = 1.03 that is also close to its true value of 1. Hence, by
incorporating in the model the occurrence of a break we are able to recover parameter estimates that are
close to the true value. In addition, if we did include a time trend in this regression it would turn out to
be insignificant at standard levels as shown in the code below:
fit <- dyn$lm(Y ~ I(trend > Tbreak) + lag(Y, 1) + trend, data=merge(Y,trend))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.068 0.093 -0.730 0.466
I(trend > Tbreak)TRUE 0.984 0.203 4.847 0.000
lag(Y, 1) 0.811 0.028 29.353 0.000
trend 0.000 0.001 0.393 0.694

4.6.2 Break at an unknown date

In most cases, we might suspect that there was a break in the series but a simple visual analysis might
not be enough to decide when it happened and if it was a break in the intercept, slope, or both. In this
case, an approach is to scan through all possible break dates and compare the goodness of fit of the model
with and without break. We then perform and F test of the null hypothesis that the model parameters
did not change. If we fix the AR order to equal p = 1, the approach is as follows:

1. Estimate the AR(p) model on the full sample:

Yt = β0 + β1Yt−1 + ϵt

for t = 1, · · · , T and denote by RSSR its Residual Sum of Squares
2. For each t∗ between tmin and tmax (e.g., tmin = 0.15 ∗ T and tmax = 0.85 ∗ T ), we estimate the

model:

Yt = β0,0 ∗ I(t ≤ t∗) + β01 ∗ I(t > t∗) + β1,0 ∗ I(t ≤ t∗) ∗ Yt−1 + β1,1 ∗ I(t > t∗) ∗ Yt−1 + ut

where RSSu represents the Residual Sum of Squares of the model in 2 (unrestricted) and RSSϵ for
the model in 1 (restricted)

3. Calculate the F statistic for the null joint hypothesis that β00 = β01 and β10 = β11 at each τ which
is given by

F (τ) = RSSu − RSSR

RSSu/(T − 2 ∗ (p + 1))

4. The supF = supτ F (τ) test statistic is the largest value of F (τ)
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While the F statistic follows the F distribution with p + 1 degrees-of-freedom in the numerator and
T − 2 ∗ (p + 1) in the denominator, the supF statistic has a non-standard distribution with the critical
values provided in the Table below.
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Figure 4.18: F-statistic for structural change at an unkown date.

Table 4.4: Critical values for supF test with 15% trimming on each
side

p 10% 5% 1%

1 7.12 8.68 12.16
2 5.00 5.86 7.78
3 4.09 4.71 6.02
4 3.59 4.09 5.12
5 3.26 3.66 4.53
6 3.02 3.37 4.12
7 2.84 3.15 3.82
8 2.69 2.98 3.57
9 2.58 2.84 3.38
10 2.48 2.71 3.23

The test for structural change can be easily implemented using the Fstats function in the strucchange
package. The application to the simulated series is as follows:
library(strucchange)
fit <- dyn$lm(Y ~ lag(Y, 1))
test <- Fstats(fit, from=0.15, to=0.85, data=as.ts(Y))
plot(test, xlab="")
abline(v=0.5, col="blue", ltype=2)

The time series plot of F (τ) shows a clear peak which corresponds to 0.5 times the sample size that indeed
corresponds to the break date. Once we find the break date, we can proceed as discussed earlier for the
case of a known break dates, that is, estimate the model separately on the sub-periods. In practice, it
is not necessarily the case that a time series experiences only one break but there could be several. In
case there are two intercept shifts corresponding to one third (intercept shift from 0 to 1) and two third
(from 1 to 2) of the sample, the time series and the F (τ) test are as follows.

The F (τ) plot shows clearly two peaks that are statistically significant and are very close to the break
dates set in simulating the data. So far we only discussed shift of the intercept, but there could be as well
changes in the persistence of the time series. Below we show a simulated time series from the following
model:

Yt = β0 + β10Yt−1I(t ≤ t∗) + β11Yt−1I(t > t∗) + ϵt
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Figure 4.19: Simulated time series with three breaks in the mean and the F-statistic for the test of
structural change at an unkown date.
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Figure 4.20: Simulated AR(1) time series with three structural breaks in the mean.

where t∗ denotes the break date. In the simulation we set the parameters to β0=0.2, β10=0.5, β11=0.8,
and the break date t∗ is set equal to 200.

The F (τ) statistic for this time series is shown below. Also in this case the maximum value of F (τ)
occurs close to 0.5 that represents halfway through the sample. Once the break date has been identified
we can then proceed by estimating the model that accounts for the change in parameters and use this
model for further analysis or forecasting.

4.7 Forecasting Revenue and Earnings-Per-Share (EPS)

... this section is still work in progress ...

An interesting application of time series methods is forecasting revenue and EPS of listed companies.
Analysts at investment banks provide their forecast about the future prospects of companies which are
then used by their clients as inputs in the investment process. Although analysts use a much wider
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Figure 4.21: F statistic for the structural break test.

information set than just the history of revenue and EPS of a company, it is still interesting to calculate
a purely time series forecast of these variables as a benchmark forecast.

Below we show the revenue and EPS time series for Walmart (ticker: WMT) from 1990 Q1 until the
as.yearqtr(max(data$datadate)). The dashed line represents a linear deterministic trend estimated
over the full sample. These series share some common features:

1. they grow over time, although a linear trend over the full sample might not be the best model to
explain the series

2. an evident seasonal component in both series
3. possible structural breaks in the level and/or dynamics of the series

For the EPS series it is evidence that there were two breaks in the 1990s in which the variable dropped and
continued growing afterwards. On the other hand, the Revenue series seems to have a slightly exponential
behavior which could be taken into account by modeling the logarithm of the variable. These series seem
good to apply the test for non-stationarity and structural break that we discussed earlier. We will start
by modeling the time series of Revenue.
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4.7.1 Modeling Revenue

Let’s first test for non-stationarity of WMT revenue. Unfortunately, we cannot use the ur.df() function
from the urca package since there is a clear seasonal pattern in the time series which cannot be added
in that function. Hence, we estimate the DF regression as follows:
## dyn$lm(drev ~ lag(rev, 1) + lag(drev, 1:4) + trend + Q2 + Q3 + Q4, data=mydata)
## dyn$lm(drev ~ lag(rev, 1) + lag(drev, 1:4) + trend + trendsq + Q2 + Q3 + Q4, data=mydata)
adf.tab

Rev + trend Rev + quad trend Log Rev + trend Log Rev + quad trend
-1.250 -0.752 -1.349 -0.752

where drev denotes the first difference of the revenue, trend is the trend variable and trendsq its square,
and Q2, Q3, and Q4 represent the quarterly dummy variables that take value 1 in quarter 2, 3, and 4
and are zero otherwise. The ADF test statistic is the t-statistic of the lagged value of the revenue or
the log revenue and the critical value at 5% when T = 93 is -3.45. The ADF test statistic is -1.25 for
the linear trend and -0.752 for the quadratic trend. In both cases we do not reject the null hypothesis
which suggests that the most appropriate model is a random walk with drift rather than a linear or
quadratic trend model with seasonal dummy variables. When considering the logarithm of revenue, the
ADF statistic is -1.349 and -4.542, respectively, so that for the quadratic trend model we reject the null
hypothesis and thus conclude it is a valid model for log revenue since the deviations from the trend are
stationary. Hence, in this case we find that the modeling implications of the test for non-stationarity rely
on the decision to take the logarithm of the variable or not. For the purpose of illustrating the modeling
process and the decisions involved, we continue by discussing the specification of the linear and quadratic
trend models and later discuss the modeling of the changes of revenue and log revenue.

The first issue that we need to resolve is whether we should use Revenue in million of $ or transform the
variable to logarithm. Below is a graph of the two series together with a deterministic trend. In the graph
below the time series of WMT revenue is shown in million of $ or logarithm and for linear or quadratic
trend.

The graph for Revenue shows that the series seems to be increasingly volatile over time, in the sense
that revenue are more (less) variable when their level is high (low). This type of heteroskedasticity can
be solved by making the changes in revenue a percentage of the level, which is achieved by taking the
logarithm of the variable. The graphs show that the variability of the series appears more homogeneous
over time when revenue is log-transformed. The linear trend doesn’t seem useful here because the time
series is off the trend line in particular at the beginning and at the end of the sample. On the other
hand, the quadratic trend appears as a better fit in both cases. Overall, the quadratic model for log
Revenue provides a good starting point to model the series and use it as a building block to which we
sequentially add features such as seasonality and AR terms. The estimation results for the quadratic
model are provided below:

Call:
arima(x = mydata$lrev, order = c(0, 0, 0), xreg = mydata[, c("trend", "trendsq")])

Coefficients:
intercept trend trendsq

8.898 0.054 0
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Figure 4.22: Time series plot of the revenue and logarithm of revenue together with the predicted value
from the linear and quadratic trend models.

s.e. 0.023 0.001 0

sigma^2 estimated as 0.00598: log likelihood = 124.36, aic = -240.72

The interpretation of the results for the quadratic trend model is that revenue is expected to grow by
100 ∗ (β1 + 2 ∗ β2 ∗ trend) ∗ ∆trend% every quarter. In 2017 Q1 the value of the trend is 10911 and the
forecast for revenue growth in 2017 Q2 based on the coefficient estimates is 0.361%.

An additional characteristic of the time series is its seasonal pattern which is quite clear from the plots.
To account for this pattern we can include quarterly dummy variables in the regression as discussed
earlier. The dummy variables for the quarters can be created using the quarter() function from package
lubridate which provides value 1,2,3, and 4 based on the date. To avoid the dummy variable trap we
can include in the regression the intercept and drop one of the seasonal variables, for example Q1. The
estimation results for the quadratic trend model with seasonal dummy variables are as follows:

Call:
arima(x = mydata$lrev, order = c(0, 0, 0), xreg = mydata[, c("Q2", "Q3", "Q4",

"trend", "trendsq")])

Coefficients:
intercept Q2 Q3 Q4 trend trendsq

9.001 -0.174 -0.119 -0.142 0.054 0
s.e. 0.013 0.011 0.011 0.011 0.000 0

sigma^2 estimated as 0.00158: log likelihood = 196.87, aic = -379.74

where the seasonal pattern is clear: WMT’s revenue are -17.4% higher in Q2 relative to Q1, -11.9% higher
in Q3 relative to Q1, and -14.2% in Q4. This pattern is not surprising for a retailer since the last quarter
of the year is associated with the holiday shopping. The fitted line in Figure 4.22 is very close to the
realized time series and it is difficult to visually investigate the success of the model in modeling revenues.

11The sample period starts in 1990 Q1 and ends in 2017 Q1 for a total of 109 observations.
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Figure 4.23: The fitted value from the quadratic trend model for the logarithm of revenue (left) and the
residuals of the model (right).

However, it becomes clearer when plotting the residuals of the regression since most of the residuals are
within a ± 5% range and alternating periods of positive residuals (estimate underpredicted the realization)
and negative residuals (estimate overpredicted the realization). It is clear that the residuals are stationary
since they mean-revert relatively quickly, and this can be better assessed by looking at the ACF of the
residuals.

The ACF of the residuals shows that there is significant correlation in the residuals that starts around
0.7 at lag 1 and then at lag 5 and then again at lag 9 to 12. The existence of such dependence means that
the deviations of revenue from the quadratic trend model have a systematic component which should be
included in the model to improve its goodness-of-fit and its forecasting power. This could be done by
adding an AR component to the model to account for these systematic deviations of revenue from the
quadratic trend model with quarterly dummy variables.
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We thus add 12 lags of log(Revenue) to the regression model and find that only lags 1 to 4 are significant
after we sequentially eliminate the irrelevant lags. However, adding these lags makes the Q4 dummy
variable irrelevant and we thus drop it from the regression and the final model is:

Call:
arima(x = mydata$lrev, order = c(4, 0, 0), xreg = mydata[, c("Q2", "Q3", "Q4",

"trend", "trendsq")])

Coefficients:
ar1 ar2 ar3 ar4 intercept Q2 Q3 Q4 trend trendsq
0.58 0.228 -0.309 0.374 8.954 -0.175 -0.120 -0.144 0.056 0

s.e. 0.09 0.102 0.103 0.090 0.039 0.008 0.006 0.008 0.001 0
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sigma^2 estimated as 0.000623: log likelihood = 246.79, aic = -471.57

The coefficient of Q4 has significantly reduced from the earlier model without lags due to the effect of
lag 4 and 5 in (partly) capturing the seasonal pattern in the data. Checking the residuals of this model
shows that there are still some lags that are statistically significant at 5%, such as at the 1 year horizon
and for lags over two years, but the model seems to be overall well-specified.
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Based on this model, the 1 to h steps ahead forecasts based on the information available in 2017 Q1 are
shown in Figure 4.24. However, we are modeling the logarithm of revenue so that the forecasted value
is also in logarithm and the scale of the plot in Figure 4.24 is thus logarithmic. The intuitive approach
of taking the exponential of the forecasts from the log-revenue model provides however an approximate
solution, since the exp(E(ln(X)) ̸= E(X). In practice, the error in doing this is quite small that can be
considered as a good approximation.
h = 8 # forecast horizon
forecast.dates <- seq(max(time(mydata)), by = "quarter", length.out = h)
forecast.quarter <- lubridate::quarter(forecast.dates)
forecast.xreg <- cbind(Q2 = forecast.quarter == 2,

Q3 = forecast.quarter == 3,
Q4 = forecast.quarter == 4,
trend = max(mydata$trend) + 1:h,
trendsq = (max(mydata$trend) + 1:h)^2)

library(forecast)
p1 <- forecast(fitrev, h, xreg=forecast.xreg, level=c(50,90))
autoplot(p1, include=24, is.date=TRUE) + theme_bw() +

scale_fill_gradientn(colours = c("plum1","plum3"), breaks=p1$level, guide="legend")
knitr::kable(exp(data.frame(p1)), caption="The point and interval forecasts from the previous model; taking the exponential of the forecasts of the logarithm of the variable provides an approximate forecast of the level of the variable.")

The application of the ADF test to revenue shows that the series can be considered non-stationary,
although in the case of the logarithm we reject the null hypothesis when the quadratic trend is included
in the model. We thus consider also the case of taking differences of revenue and log revenue by creating
the variable drev = diff(rev) and dlrev = diff(log(rev)). Below we show a time series plot of
these two variables.
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Table 4.5: The point and interval forecasts from the previous model; taking the exponential of the
forecasts of the logarithm of the variable provides an approximate forecast of the level of the variable.

Point.Forecast Lo.50 Hi.50 Lo.90 Hi.90
110 132631 130417 134883 127296 138190
111 110002 107882 112164 104903 115349
112 117339 114826 119908 111303 123703
113 112513 110086 114993 106687 118658
114 129676 126744 132677 122641 137115
115 107295 104805 109844 101324 113617
116 113231 110477 116054 106632 120238
117 109228 106531 111993 102768 116094
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Figure 4.24: h step ahead forecasts for the logarithm of revenue based on the AR(4) model with seasonal
dummies and quadratic trend.
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The time series plot of drev on the left shows that the variable seems to have increasing dispersion as
time progresses. This might be problematic in estimating the parameters of the model since the recent
observations will have a larger weight in estimation relative to older observations. This problem can
be easily solved, as discussed earlier, by taking the logarithm of revenue as shown on the right plot.
Changes become relative to the level in the previous period and thus more homogeneous (technically,
homoskedastic), although it seems that in the last years of the sample the dispersion has somewhat
decreased.

4.7.2 Earnings-Per-Share (EPS)

As we saw earlier, the EPS series is not well-explained by a linear trend, and one of the reasons is the
occurence of two breaks in the 1990s. The first step in modeling the EPS series is to identify the break
dates to try to account for these events. The first break occured in 1993Q1 when EPS jumped to $0.20
from $0.65 for 1992Q4, while the second break occured in 1999Q1 when EPS dropped to $0.20 from
$0.70 in the previous quarter. We can account for these breaks by fitting different trend lines to the time
period before 1993Q1, between 1993Q1 and 1999Q1, and after 1999Q1. This can be done by creating
a constant and trend variables for each of these three subperiods. For example, the constant for the
period between 1993Q1 and 1998Q1 can be created as (time >= 1993) * (time <= 1998.75), where
time = time(trend). The trend can be similarly created by trend * ((time >= 1993) * (time <=
1998.75)). The fitted line for the piece-wise linear trend model is shown below, and it is clear that the
model improves significantly over a linear trend model with no break (earlier graph). The graph on the
right shows the ACF of the residuals that shows a clear seasonal pattern which we did not account yet
in the model.
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Splitting the full sample in sub-periods results in the same coefficient estimates that would be obtained
by estimating the regression in each sub-period. In other words, the observations in each sub-period
contribute to estimate the parameters in that period but not in others. This is important if our goal is to
model or forecast the time series: in case our only goal is actually to forecast EPS, then we might as well
consider EPS since the first quarter of 1999 and neglect the rest of the sample since it is uninformative
about the current regime. However, it might also be the case that, once accounted for the shift in
the trend line, we might want to estimate the seasonality and AR parameters on the full sample of
observations, instead of the sub-period.

For the case of Revenue we considered a quadratic trend model and it is instructive to see how it would
perform for EPS. In this case we might not consider the two jumps as breaks, but fluctuations around
a quadratic trend. The fitted line shown below starts relatively flat until approximately 2000 when it
starts an upward movement. In terms of goodness-of-fit, the previous model dominates the quadratic
trend model even after accounting for the different number of parameters of the two models. In what
follows, we examine the two models to evaluate the effect of adding features, such as seasonality and AR
terms, on the model performance.
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The next step in modeling the EPS series is to account for the seasonality in the EPS series by adding
quarterly dummy variables to the regression. The results are shown below for the piece-wise linear trend
and the quadratic trend models. It is clear that the fit improves in both cases since the fitted line is
closer to the EPS time series.
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The two breaks that are unaccounted by the quadratic model imply large errors which could be
dummied-out by adding in the regression two dummy variables that are equal to one in the quar-
ters in which the break occurred. Neutralizing the effect of these large observations has the benefit of
providing unbiased estimates of the parameters which helps also in producing more accurate forecasts of
the future.
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Finally, the residuals still display some auto-correlation which suggests including AR terms in the regres-
sion. We add 12 lags and found that lag 1, 4, 5 and 8 are significant and remain so even after we exclude
the insignificant lags. The fitted lines for the two models when including the AR component and the
ACF of the residuals are shown below. In both cases the overall fit of the model is quite good and the
residuals ACF is mostly insignificant.
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To compare the goodness-of-fit of these models we report below the Adjusted R2 of the different speci-
fications considered so far. The best model is specification (E) which consists of the linear trend model
with breaks, in addition to seasonality and AR terms. Specification (F) has a performance which is very
close and is characterized of the quadratic trend model with dummy variables for the break dates, as
well as seasonality and AR terms. Both the seasonal dummy variables and the AR terms are essential in
improving the performance of the models. However, the difference in adjusted R2 are very small and a
more powerful test might be to evaluate the performance of the models out-of-sample.

Table 4.6: Adjusted R2 for different specifications of the EPS model

Model Adj. R2

(A) Linear Trend & Break 0.9592
(B) Quadratic Trend + Dummies 0.805
(C) = (A) + Seasonality 0.9184
(D) = (B) + Seasonality 0.8942
(E) = (C) + AR 0.9892
(F) = (E) + AR 0.9898

4.8 Automatic time series modeling

Coming soon … or later …
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#library(forecast)
#library(prophet)

R commands

Table 4.7: R functions used in this Chapter.

acf() ar() autoplot() model.matrix() ur.df() NA
adf.test() arima() Fstats() SelectModel() NA NA

Table 4.8: R packages used in this Chapter.

dyn forecast strucchange urca
FitAR ggfortify tseries NA

Exercises

1. Exercise 1
2. Exercise 2



Chapter 5

Volatility Models

A stylized fact across many asset classes is that the standard deviation of returns, also referred to as
volatility, varies significantly over time. Figure 5.1 shows the time series of the daily percentage returns
of the S&P 500 and of the Japanese Yen to US Dollar exchange rate from January 1980 until September
2017. The horizontal dashed lines represent a 95% confidence interval obtained as the sample average
return plus/minus 1.96 times the sample standard deviation of the returns. A features that emerges from
the Figure is that financial returns stay within these bands for long periods of time followed by periods
of large positive and negative returns that last for several months or years. Hence, the dispersion of
the distribution of returns in any given day seems to be different with some periods of high volatility
and others prolonged periods of low volatility. So far we have discussed models for the expected return,
that is E(Rt+1), but now we are arguing that we should also consider models for the expected variance
of returns, V ar(Rt+1). Modeling volatility is thus a important area of financial econometrics since it
provides a measure of risk which is an important input to many financial decisions (e.g., from option
pricing to risk management).

A measure of market volatility exist already and is represented by the CBOE Volatility Index (or VIX).
The VIX is obtained from the implied volatilities of S&P 500 Index option prices and it is interpreted
as a measure of market risk or uncertainty contained in option prices. Figure 5.2 shows the daily time
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Figure 5.1: Daily percentage returns of the SP 500 Index and the Japanese Yen to US Dollar exchange
rates starting in January 1980.
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Figure 5.2: The CBOE Volatility Index (VIX) at the daily frequency since January 1990.

series of the VIX since January 1990 on an annualized scale. Although a measure of volatility such as
VIX is available for the S&P 500, for many other assets such a measure is not available and we can either
construct it based on option prices or based on historical returns.

This Chapter discusses several approaches that can be used to model and forecast volatility based on
historical returns. The basic setup that we consider is a model that assumes that returns at time t + 1,
denoted Rt+1, are defined as:

Rt+1 = µt+1 + ηt+1

This model decomposes the return Rt+1 in two components:

• Expected return: µt+1 represents the predictable part or the expected return of the asset. At the
daily and intra-daily frequency, this component is typically assumed equal to zero. Alternatively,
it could be assumed to follow an AR(p) process µt+1 = ϕ0 + ϕ1 ∗ Rt + · · · + ϕp ∗ Rt−p+1 or being a
function of other contemporaneous or lagged variables, that is, µt+1 = ϕ0 + ϕ1 ∗ Xt + ϕ2Xt−1.

• Shock: ηt+1 is the unpredictable component of the return; it can assumed to be equal to ηt+1 =
σt+1ϵt+1 where:

– Volatility: σt+1 is the standard deviation of the shock conditional on information available at
time t; in a time series model volatility is a function of past returns, e.g., σ2

t+1 = ω + αRt.
– Standardized shock: ϵt+1 represents the shock which is assumed to have mean 0 and vari-

ance 1. A typical assumption is that it is normally distributed, but alternative distributional
assumption can be introduced such as a t distribution that allows for fatter tails.

The aim of this Chapter is to discuss different models to estimate and forecast σt+1 using simple techniques
such as Moving Average (MA) and Exponential Moving Average (EMA), followed by a discussion of a time
series model such as the Auto-Regressive Conditional Heteroskedasticy (ARCH) model. ARCH models
have been extended in several directions, but for the purpose of this Chapter we will consider the two
most important generalizations: GARCH (Generalized ARCH) and GJR-GARCH (Glosten, Jagganathan
and Runkle ARCH) that includes an asymmetric relationship between the shocks and the conditional
variance.
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5.1 Moving Average (MA) and Exponential Moving Average
(EMA)

A simple approach to estimate the conditional variance is to average the square returns over a recent
window of observations, for example the last M observations. The Moving Average (MA) estimate of the
variance in day t, σ2

t+1, is given by

σ2
t+1 = 1

M

(
R2

t + R2
t−1 + · · · + R2

t−M+1
)

= 1
M

M∑
j=1

R2
t−j+1

and the standard deviation is calculated as
√

σ2
t+1. The two extreme values of the window are M = 1,

which implies σ2
t+1 = R2

t , and M = t, that leads to σ2
t+1 = σ2, where σ2 represents the unconditional

variance estimated on the full sample. Small values of M imply that the volatility estimate is very
responsive to the most recent square returns, whilst for large values of M the estimate responds very
little to the latest returns. Another way to look at the role of the window size on the smoothness of
the volatility is to interpret it as an average of the last M days each carrying a weight of 100/M% (i.e.,
for M = 25 the weight is 4%). When M increases, the weight given to each observation in the window
becomes smaller so that each daily square return (even when extreme) has a smaller impact on changing
the volatility estimate. The discussion so far represents the typical implementation of the MA approach
which relies on the assumption that µt+1 = 0 so that Rt+1 = ηt+1. More generally, we might want
to include an intercept or assume that the expected return follows a AR(1). In this case, the MA is
calculated by averaging the squares of ηt+1 calculated as ηt+1 = Rt+1 − µt+1.

The MA approach can be implemented in R using the rollmean() function provided in package zoo
which requires to specify the window size (M in the notation above). An example for the S&P 500 daily
returns is provided in Figure 5.3:
GSPC <- getSymbols("^GSPC", from="1980-01-01", auto.assign=FALSE)
sp500daily <- 100 * ClCl(GSPC) %>% na.omit
names(sp500daily) <- "RET"
sigma25 <- zoo::rollmean(sp500daily^2, 25, align="right")
names(sigma25) <- "MA25"
ggplot(merge(sigma25, sp500daily)) + geom_line(aes(time(sp500daily), abs(RET)),color="gray80") +

theme_bw() + geom_line(aes(index(sp500daily), MA25^0.5), color="orangered3") +
labs(x=NULL, y=NULL)

The effect of increasing the window size from M = 25 (continuous line) to 100 (dashed line) is shown in
Figure 5.4: the longer window smooths out the fluctuation of the MA(25) since each observation is given
a smaller weight. This implies that large (negative or positive) returns increase volatility less when using
longer windows relative to shorter ones.

One drawback of the MA approach is that large daily returns are able to increase/decrease significantly
the volatility estimate when they enter/exit the window of M days. An extension of the MA approach is
to have a smoothly decreasing weight assigned to older returns instead of the discrete jump of the weight
from 1/M to 0 at the M + 1th observation. This approach is called Exponential Moving Average (EMA)
and gained popularity in finance since the investment bank J.P. Morgan proposed it as a model to predict
volatility for Value-at-Risk (VaR) calculations. The EMA with parameter λ is calculated as follows:
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Figure 5.3: Absolute returns of the SP 500 Index and the Moving Average (MA) with parameter M set
to 25.
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Figure 5.4: The Moving Average (MA) with parameter M set to 25 and 100. Can you guess if the dashed
line corresponds to M equal to 25 or 100 days?
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Figure 5.5: Weight on past values for MA with M equal to 25 and 100 and EMA equal to 0.04 and 0.06.

σ2
t+1 = λ

∞∑
j=1

(1 − λ)j−1R2
t−j+1

where λ is a smoothing parameter between zero and one. After some algebra, the expression above can
be rewritten as follows:

σ2
t+1 = (1 − λ) ∗ σ2

t + λR2
t

which shows that the conditional variance estimate in day t + 1 is given by a weighted average of the
previous day estimate and the square return in day t, with the weights equal to 1 − λ and λ, respectively.
A typical value of λ is 0.06 which means that day t has a 6% weight in calculating the volatility forecast,
day t − 1 has weight (0.94 * 6) = 5.64%, day t − 2 has weight (0.942 * 6) = 5.3016%, day t − k has
weight (0.94k * 6)% and so on. Figure 5.5 shows the MA and EMA weight on past observations. The
MA method assigns a positive and constant weight to the last M observations as opposed to the EMA
approach that spreads the weight over a longer period and weights differently more recent observation
relative to older ones.

The typical value for M is 25 (one trading month) and for λ it is 0.06. The graph below compares the
volatility estimates from the MA(25) and EMA(0.06) methods. In this example we use the package TTR
that provides functions to calculate moving averages, both simple and of the exponential type:
library(TTR)
# SMA() function for Simple Moving Average; n = number of days
ma25 <- SMA(sp500daily^2, n=25)
names(ma25) <- "MA25"
# EMA() function for Exponential Moving Average; ratio = lambda
ema06 <- EMA(sp500daily^2, ratio=0.06)
names(ema06) <- "EMA06"
autoplot(merge(ma25, ema06)^0.5, ncol=2) + theme_bw()

Figure 5.6 shows the MA and EMA daily volatility estimate for over 23 years and, at this scale, it is
difficult to see large differences between the two methods. However, by plotting a sub-period of time,
some differences become evident. Figure 5.7 shows the period between beginning 2008 and end of 2009.
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Figure 5.6: Time series of the MA(25) and EMA(0.06) volatility estimates.
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Figure 5.7: Volatility estimates of MA(25) and EMA(0.06) from January 2008 to December 2009. The
dots represents the absolute daily returns.

The biggest difference between the two methods is that in periods of rapid change (from small/large
to large/small absolute returns) the EMA line captures the change in volatility regime more smoothly
relative to the simple MA. This is in particular clear in the second part of 2008 and the beginning of
2009, with some differences between the two lines.

The parameters of MA and EMA are, usually, chosen a priori rather than being estimated from the data.
There are possible ways to estimate these parameters although they are not popular in the financial
literature and typically do not provide great benefit for practical purposes. In the following Section we
discuss a more general volatility model which generalizes the EMA model and it is typically estimated
from the data.

5.2 Auto-Regressive Conditional Heteroskedasticity (ARCH)
models

The ARCH model was proposed by Engle (1982) to model the time-varying variance of the inflation rate.
Since then it has gained popularity in finance as a way to model the changes in the volatility of asset
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returns. Assuming that µt+1 = 0 as in the previous Sections, the model simplifies to Rt+1 = ηt+1 =
σt+1ϵt+1, that is, the return next period is given by an exogenous shock, ϵt+1, amplified by the time-
varying volatility, σt+1

1. The conditional variance σ2
t+1 can be assumed to be a function of the previous

period square return, that is,
σ2

t+1 = ω + α ∗ R2
t

where ω and α are parameters to be estimated. The AR part in the ARCH name relates to the fact
that the variance of returns is a function of the lagged (square) returns. This specification is called the
ARCH(1) model and can be generalized to include p lags which results in the ARCH(p) model:

σ2
t+1 = ω + α1 ∗ R2

t + · · · + αp ∗ R2
t−p+1

The empirical evidence indicates that financial returns typically require p to be large. A parsimonious
alternative to the ARCH model is the Generalized ARCH (GARCH) model which is characterized by the
following Equation for the conditional variance:

σ2
t+1 = ω + α ∗ R2

t + β ∗ σ2
t

In this case the variance is affected by R2
t as well as by last period conditional variance σ2

t . This
specification is parsimonious, relative to an ARCH model with large p, since all past square returns are
included in σ2

t−1, but using only 3 parameters rather than of p + 1. The specification above represents a
GARCH(1,1) model since it includes one lag of the square return and the conditional variance. However,
it can be easily generalized to the GARCH(p,q) case in which p lags of the square return and q lags of
the conditional variance are included. The empirical evidence suggests that the GARCH(1,1) is typically
the best model for several asset classes and it is only in rare instances outperformed by p and q different
from 1.

We can derive the mean of the conditional variance in the case of the GARCH(1,1) which is given by:

σ2 = ω/(1 − (α + β))

where σ2 = E(σ2
t+1) and represents the unconditional variance as opposed to σ2

t that denotes the con-
ditional variance of the returns. The difference between these quantities is that σ2

t+1 is a forecast of
volatility based on the information available at time t, while σ2 represents the time-average of the con-
ditional forecasts. The Equation for σ2 indicates that a condition for the variance to be finite is that
α + β < 1. If this condition is not satisfied, the variance of the returns is infinite and volatility behaves
like a random walk model, rather than being mean-reverting. This situation is similar to the case of the
AR(1) in which a coefficient (in absolute value) less than 1 ensures that the time series is stationary,
and thus mean-reverting. We can think similarly about the case of the variance, where the condition
that α + β < 1 guarantees that volatility is stationary and mean reverting. What does it mean that
variance (or volatility) is mean reverting? It means that volatility might be highly persistent, but oscil-
lates between periods in which it is higher and lower than its unconditional level σ. This interpretation
is consistent with the empirical observation that volatility switches between periods in which it is high
and others in which it is low. On the other hand, non-stationary volatility implies that periods of high
volatility (i.e., higher than average) are expected to persist in the long run rather than reverting back to

1More generally, if µt+1 ̸= 0 then the conditional variance is a function of the current and past values of η2
t rather than

R2
t .
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the unconditional variance. The same holds for periods of low volatility which, in case of non-stationarity,
is expected to last in the long run. This distinction is practically relevant, in particular when the interest
is to forecast future volatility and at long horizons.

The distinction between mean-reverting (i.e., stationary) and non-stationary volatility is an important
property that differentiates volatility models. In particular, the EMA model can be considered a special
case of the GARCH model when the parameters are set equal to ω = 0, α = λ and β = 1 − λ. This shows
that EMA imposes the assumption that α+β = 1, and thus that volatility is non-stationary. Empirically,
this hypothesis can be tested by assuming the null hypothesis α + β = 1 versus the one sided hypothesis
that α + β < 1.

Another popular GARCH specification was proposed by Glosten, Jagganathan and Runkle (hence, GJR-
GARCH) which assumes that the square return has a different effect on volatility depending on its sign.
The conditional variance Equation of this model is:

σ2
t+1 = ω + α1 ∗ R2

t + γ1R2
t ∗ I(Rt ≤ 0) + β ∗ σ2

t

In this specification, when the return is positive its effect on the conditional variance is α1 and when it is
negative the effect is α1 + γ1. Testing the hypothesis that γ1 = 0 thus provides a test of the symmetry of
the effect of shocks on volatility. The estimation of the model on asset returns from many asset classes
shows that α1 is estimated close to zero and insignificant, while γ1 is found positive and significant. The
evidence thus suggests that negative shocks lead to more uncertainty and an increase in the volatility of
asset returns, while positive shocks do not have a relevant effect.

5.2.1 Estimation of GARCH models

ARCH/GARCH models cannot be estimated using OLS because the model is nonlinear in parameters2

The estimation of GARCH models is thus performed using an alternative estimation technique called
Maximum Likelihoood (ML). The ML estimation method represents a general estimation principle
that can be applied to a large set of models, not only to volatility models.

It might be useful to first discuss the ML approach to estimation in comparison to the familiar OLS
approach. The OLS approach is to choose the parameter values that minimize the sum of the square
residuals which measures the unfitness of the model to explain the data for a certain set of parameter
values. Instead, the approach of ML is to choose the parameter values that maximize the likelihood
or probability that the data were generated by the model. For the case of a simple AR model with
homoskedastic errors it can be shown that the OLS and ML estimators are equivalent. A difference
between OLS and ML is that the first provides analytical formula for the estimation of linear models,
whilst the ML estimator is the result of numerical optimization3.

We assume that volatility models are of the general form discussed earlier, i.e., Rt+1 = µt+1 + σt+1ϵt.
Based on the distributional assumption introduced earlier, we can say that the standardized residuals
(Rt+1 − µt+1)/σt+1 should be normally distributed with mean 0 and variance 1. Bear in mind that

2Furthermore, the volatility is not directly observable which does not allow the OLS estimation of the conditional variance
model as it would be the case if the dependent variable is observable. However, recent advances in financial econometrics
that will be discussed in the following Chapter have partly overcome this difficulty.

3Numerical optimization consists of algorithms that are used to find the minimum or maximum of an objective function.
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both µt+1 and σ2
t depend on parameters that are denoted by θµ and θσ. For example, for an AR(1)-

GARCH(1,1) model the parameter of the mean is θµ = (ϕ0, ϕ1) and the parameters of the conditional
variance is θσ = (ω, α, β)′. Given the assumption of normality, the density or likelihood function of Rt+1

is

f(Rt+1|θµ, θσ) = 1√
2πσ2

t+1(θσ)
exp

[
−1

2

(
Rt+1 − µt+1(θµ)

σt+1(θσ)

)2
]

which represents the normal density for the return in day t + 1. We wrote the conditional mean and
variance as µt+1(θµ) and σ2

t (θσ) to make explicit their dependence on parameters over which the likelihood
function will be maximized. Since we have T returns, we are interested in the joint likelihood of the
observed returns and denoting by p the largest lag of Rt+1 used in the conditional mean and variance,
we can define the (conditional) likelihood function L(θµ, θσ) (= f(Rp+1, · · · , Rt+1|θµ, θσ, R1, · · · , Rp)) as

L(θµ, θσ) =
T∏

t=p+1
f(Rt+1|θµ, θσ) =

T∏
t=p+1

1√
2πσ2

t+1(θσ)
exp

[
−1

2

(
Rt+1 − µt+1(θµ)

σt+1(θσ)

)2
]

The ML estimates θ̂µ and θ̂σ are thus obtained by maximizing the likelihood function L(θµ, θσ). It is
convenient to log-transform the likelihood function to simplify the task of maximizing the function. We
denote the log-likelihood by l(θµ, θσ) and it is given by

l(θµ, θσ) = ln L(θµ, θσ) = −1
2

T∑
t=p+1

[
ln(2π) + ln σ2

t+1(θσ) +
(

Rt+1 − µt+1(θµ)
σt+1(θσ)

)2
]

since the first term ln(2π) does not depend on any parameter, it can be dropped from the function. The
estimates θ̂µ and θ̂σ are then obtained by maximizing

l(θµ, θσ) = −1
2

T∑
t=p+1

[
ln σ2

t+1(θσ) +
(

Rt+1 − µt+1(θµ)
σt+1(θσ)

)2
]

The maximization of the likelihood or log-likelihood is performed numerically, which means that we use
algorithms to find the maximum of this function. The problem with this approach is that, in some
situations, the likelihood function is not well-behaved and characterized by local maxima. The numerical
search has to be started at some initial values and, in the difficult cases just mentioned, the choice of
these values is extremely important to achieve the global maximum of the function. The choice of valid
starting values for the parameters can be achieved by a small-scale grid search over the space of possible
values of the parameters.

In the case of volatility models the likelihood function is usually well-behaved and achieves a maximum
quite rapidly. In the following Section we discuss some R packages that implement GARCH estimation
and forecasting.

5.2.2 Inference for GARCH models

… coming soon (or later) …
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5.2.3 GARCH in R

There are several packages that provide functions to estimate models from the GARCH family. One of
the earliest is the garch() function in the tseries package, which is however quite limited in the type
of models it can estimate. More flexible functions for GARCH estimation are provided by the package
fGarch, that allows to specify the conditional mean µt+1 and the conditional variance σ2

t+1. The function
to perform the estimation is called garchFit. The example below shows the application of the garchFit
function to the daily returns of the S&P 500 index. The first example estimates a GARCH(1,1) with only
the intercept in the conditional mean (i.e., µt+1 = µ) and then consider an AR(1) for the conditional
mean (i.e., µt+1 = µ + β1Rt) which we denote as the AR(1)-GARCH(1,1) model. Notice that to specify
the AR(1) for the conditional mean we use the function arma(p,q) which is a more general function than
those used to estimate AR(p) models.
library(fGarch)
fit <- garchFit(~garch(1,1), data=sp500daily, trace=FALSE)
round(fit@fit$matcoef, 3)

Estimate Std. Error t value Pr(>|t|)
mu 0.059 0.008 7.079 0
omega 0.015 0.002 7.182 0
alpha1 0.081 0.006 14.032 0
beta1 0.906 0.007 133.890 0

The output provides standard errors for the parameter estimates as well as t-stats and p-values for the null
hypothesis that the coefficients are equal to zero. The results show that the mean µ is estimated equal to
0.059% and it is statistically significant even at 1%. Hence, for the daily S&P 500 returns the assumption
of a zero expected return is rejected. The estimate of α is 0.081 and of β is 0.906, with their sum equal
to 0.987, which is quite close enough to 1 to conclude that volatility is very persistent and close to being
non-stationary. It might also be interesting to evaluate the need to introduce some dependence in the
conditional mean, for example, by assuming an AR(1) model. The command arma(1,0) + garch(1,1)
in the garchFit() function estimates an AR(1) model with GARCH(1,1) conditional variance:
fit <- garchFit(~ arma(1,0) + garch(1,1), data=sp500daily, trace=FALSE)
round(fit@fit$matcoef, 3)

Estimate Std. Error t value Pr(>|t|)
mu 0.058 0.008 7.045 0.000
ar1 0.003 0.011 0.265 0.791
omega 0.015 0.002 7.182 0.000
alpha1 0.081 0.006 14.031 0.000
beta1 0.906 0.007 133.850 0.000

The estimate of the AR(1) coefficient is 0.003 and it is not statistically significant at 10% level, which
shows the irrelevance of including dependence in the conditional mean of daily financial returns.

Based on the GARCH model estimation, we can then obtain the conditional variance σ̂2
t and the condi-

tional standard deviation σ̂t. The conditional standard deviation is extracted by appending @sigma.t to
the garchFit object:
sigma <- fit@sigma.t # class is numeric
qplot(time(sp500daily), sigma, geom="line", xlab=NULL, ylab="") +

theme_bw() + labs(title="Conditional standard deviation")
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Figure 5.8: Conditional standard deviation estimated by the AR(1)-GARCH(1,1) model for the SP500
returns.
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Figure 5.9: Comparison of the estimated standard deviation from the GARCH(1,1) model and from the
EMA with parameter equal to 0.06.

Figure 5.8 shows the significant variation over time of the standard deviation that alternates between
periods of low and high volatility, in addition to sudden increases in volatility due to the occurrence of
large returns. It is also interesting to compare the fitted standard deviation from the GARCH model
with the ones obtained from the MA and EMA methods. The correlation between the MA and GARCH
conditional standard deviation is 0.967 and between EMA and GARCH is 0.981 and, to a certain extent,
they can be considered very good substitutes for each other (in particular at short horizons). Figure
5.9 shows the scatter plot of the conditional standard deviation for the GARCH model vs the MA
and EMA estimates. Points above/below the diagonal represent days in which the GARCH estimate
is larger/smaller relative to the MA/EMA estimates. The largest differences occur for the volatility
estimates obtained with the MA method for values larger than 5%. This is due to the different reaction
of σ2

t+1 to large (absolute) returns in the MA models relative to the GARCH and EMA models.

The residuals of the GARCH model can also provide valuable information about the goodness of the
model in explaining the returns. Appending @residuals to the garchFit estimation object we can
extract the residuals of the GARCH model that represent an estimate of σt+1ϵt+1. Figure 5.10 shows
that the residuals maintain most of the characteristics of the raw returns, in particular the clusters of
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Figure 5.10: Standardized and unstandardized residuals for the SP500 daily returns using the AR(1)-
GARCH(1,1) model.

volatility. This is because these residuals have been obtained from the last fitted model in which µ̂t+1 =
0.058 + (0.003) ∗Rt−1 and the residuals are thus given by Rt+1 − µ̂t+1. The contribution of the intercept
is to demean the return series while the small coefficient on the lagged return leads to returns that are
very close to the residuals.
res <- fit@residuals # class is numeric
p1 <- qplot(time(sp500daily), res, geom="line", main="UNstandardized Residuals") +

labs(x=NULL, y=NULL) + theme_bw()
p2 <- qplot(time(sp500daily), res/sigma, geom="line", main="Standardized Residuals") +

labs(x=NULL, y=NULL) + theme_bw()
gridExtra::grid.arrange(p1, p2, ncol=2)

Figure 5.10 shows the time series of the residuals σt+1ϵt+1 together with the standardized residuals
ϵt+1 which should satisfy the properties of being independent over time (i.e., no auto-correlation) and
normally distributed (given our earlier assumptions). The time series of the standardized residuals seem
to be exempt from heteroskedasticity (e.g., volatility clustering) which has been taken into account by
σt+1. However, we notice a few large negative standardized residuals that are quite unlikely to happen
assuming a normal distribution4.

The first property of the standardized residuals is that they should be approximately normally distributed.
To assess this assumption, Figure 5.11 compares the histogram of the standardized residuals with the
standard normal distribution. The histogram of the standardized residuals has a large peak at the center
of the distribution and fatter left tail relative to the normal, although this is difficult to see in the graph.
However, calculating the skewness of the standardized residuals, equal to -0.463, and the excess kurtosis,
equal to -0.463, indicate that the large negative returns in the time series plot point to the deviation of
the standardized returns distribution from normality. We can conclude that the normality assumption we
made earlier seems not to be supported in the data in favor of a distribution with fatter tails and possibly
skewed. However, the skewness could also be due to misspecification of the conditional variance in the
sense that the GARCH(1,1) model might be missing some important features of the volatility dynamics.

4The probability of an event of minus 6 or smaller is very small and on a sample length of 9501 it is expected to occur 9
times every 1 million days.
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Figure 5.11: Histogram of the standardized residuals and the standard normal distribution.
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Figure 5.12: ACF of the standardized residuals of the AR(1)-GARCH(1,1) model and their square values.

We can also consider the auto-correlation of residuals and square residuals to assess if there is neglected
dependence in the conditional mean and variance and the ACF are shown in Figure 5.12. Overall, there
is weak evidence of auto-correlation in the standardized residuals and in their squares, so that, from this
standpoint, the GARCH(1,1) model seems to be well specified to model the daily returns of the S&P 500.
p1 <- ggacf((res/sigma), lag=20)
p2 <- ggacf((res/sigma)^2, lag=20)
gridExtra::grid.arrange(p1, p2, ncol=2)

Another package that provides functions to estimate a wide range of GARCH models is the rugarch
package. This packages requires first to specify the functional form of the conditional mean and variance
using the function ugarchspec() and then proceed with the estimation using the function ugarchfit().
Below is an example for an AR(1)-GARCH(1,1) model estimated on the daily S&P 500 returns:
library(rugarch)
spec = ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(1,0)))
fitgarch = ugarchfit(spec = spec, data = sp500daily)

Estimate SE
mu 0.059 7.059
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ar1 0.003 0.265
omega 0.015 6.999
alpha1 0.081 13.775
beta1 0.906 130.497

The estimation results are the same as those obtained for the fGarch package and more information
about the estimation results can be obtained using command show(fitgarch).

The estimation of the GJR-GARCH model is quite straightforward in this package since it requires only
to specify the option model='gjrGARCH' in ugarchspec(), in addition to selecting the orders for the
conditional mean and variance as shown below:
spec = ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(1,0)))
fitgjr = ugarchfit(spec = spec, data = sp500daily)

Estimate SE
mu 0.035 4.203
ar1 0.008 0.686
omega 0.019 8.343
alpha1 0.018 4.225
beta1 0.904 131.711
gamma1 0.119 11.881

The results for the S&P 500 confirm the earlier discussion that positive returns have a negligible effect
in increasing volatility (α̂1 =0.018) while negative returns have a very large and significant effect (γ̂1

= 0.119). Figure 5.13 compares the time series of the volatility estimate σ̂t for the GARCH and GJR
models. Although the time series look pretty similar, the scatter plot shows that during turbulent times
the volatility estimate of GJR is larger relative to GARCH(1,1) due to the more pronounced reaction to
negative returns.
p1 <- autoplot(merge(GARCH = sigma(fitgarch), GJR = sigma(fitgjr)), scales="fixed") + theme_bw()
p2 <- ggplot(data=merge(GARCH = sigma(fitgarch), GJR = sigma(fitgjr))) +

geom_point(aes(x = GARCH, y=GJR), color="gray70", size=0.3) +
geom_abline(intercept=0, slope=1, color="steelblue3", linetype="dashed", size=0.8) + theme_bw()

gridExtra::grid.arrange(p1, p2, ncol=2)

Is this asymmetry a general feature of financial data or is it more limited to some asset classes? We
can answer this question by estimating the GJR-GARCH model on the daily returns of the JPY/USD
exchange rate. The estimation results for γ in this case provide a t-stat of 1 that is not significant even
at 10% significance level thus indicating that exchange rate returns do not show the asymmetric behavior
of volatility that is a features of stock returns.

Estimate SE
mu -0.004 -0.651
ar1 0.003 0.283
omega 0.008 2.531
alpha1 0.040 4.072
beta1 0.938 54.315
gamma1 0.007 1.289



5.2. AUTO-REGRESSIVE CONDITIONAL HETEROSKEDASTICITY (ARCH) MODELS 149

GJR

GARCH

1980 1990 2000 2010

2

4

6

8

2

4

6

8

2

4

6

8

2 4 6

GARCH

G
JR

Figure 5.13: Time series of the GARCH and GJR volatility estimate (left) and their scatter plot (right).

The selection of the best performing volatility model can be done using the AIC selection criterion,
similarly to the selection of the optimal order p for AR(p) models. The package rugarch provides the
function infocriteria() that calculates AIC and several other selection criteria. These criteria are
different in the amount of penalization that they involve for adding more parameters (AR(1)-GJR has
one parameter more than AR(1)-GARCH). For all criteria, the best model is the one that provides the
smallest value. In this case the GJR specification clearly outperforms the basic GARCH(1,1) model for
all criteria.
fit.ic <- cbind(infocriteria(fitgarch), infocriteria(fitgjr))
colnames(fit.ic) <- c("GARCH","GJR")

GARCH GJR
Akaike 2.66663 2.64352
Bayes 2.67040 2.64804
Shibata 2.66663 2.64352
Hannan-Quinn 2.66791 2.64505

The function ugarchforecast() allows to compute the out-of-sample forecasts for a model n.ahead
periods. The plot below shows the forecasts made in 2017-09-01 when the volatility estimate σt+1 was
0.629 for GARCH and 0.665. Both models forecast an increase in volatility in the future since the
volatility is mean-reverting in these models (and at the moment the forecast was made volatility was
below its long-run level σ).
nforecast = 250
garchforecast <- ugarchforecast(fitgarch, n.ahead = nforecast)

ggplot(temp) + geom_line(aes(Date, GARCH), color="tomato3") +
geom_line(aes(Date, GJR), color="steelblue2") +
geom_hline(yintercept = sd(sp500daily), color="seagreen4", linetype="dashed") +
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Figure 5.14: Volatility forecasts from 1 to 250 days ahead. The horizontal line represents the unconditional
standard deviation of the returns.
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Figure 5.15: News Impact Curve (NIC) for the GARCH and GJR models.

labs(x=NULL, y=NULL, title="Volatility forecasts",
subtitle=paste("Forecast date: ", end(sp500daily))) + theme_bw()

Finally, we can compare the GARCH and GJR specifications based on the effect of a shock (ϵt) on the
conditional variance (σ2

t ). The left plot refers to the GARCH(1,1) model and clearly show that positive
and negative shocks (of the same magnitude) increase the conditional variance by the same amount.
However, the news impact curve for the GJR model clearly shows the asymmetric effect of shocks, since
there is no effect when ϵt−1 is positive but a large effect when the shock is negative.
newsgjr <- newsimpact(fitgjr)
p1 <- qplot(newsgarch$zx, newsgarch$zy, geom="line", main="GARCH") +

geom_vline(xintercept = 0, linetype="dashed") + theme_bw()
p2 <- qplot(newsgjr$zx, newsgjr$zy, geom="line", main="GJR") +

geom_vline(xintercept = 0, linetype="dashed") + theme_bw()
gridExtra::grid.arrange(p1, p2, ncol=2)
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R commands

Table 5.1: R functions used in this Chapter.

rollmean() garch() ugarchfit()
SMA() garchFit() ugarchforecast()
EMA() ugarchspec() newsimpact()

Table 5.2: R packages used in this Chapter.

zoo tseries rugarch
TTR fGarch NA

Exercises

1. Exercise 1
2. Exercise 2
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Chapter 6

High-Frequency Data

Since the 1990s the availability of intra-day transaction and quote data has sparkled research on existing
questions and new ones have emerged from the analysis of the micro-structure of these markets. One
of the old questions in financial econometrics is how to model and predict volatility as we discussed in
the previous Chapter using several GARCH-type models. As we mentioned earlier, there has been a fair
amount of research on realized volatility measures which represent an observable quantity for volatility
based on intra-day returns. This approach is not only interesting because it provided an observable
measure of volatility, but also because it contributed to the development of a new set of models that
takes this measure as the dependent variable and try to explain it with time series and multivariate
models. The scope of this Chapter is not so much to overview all of the interesting issues that arise with
high-frequency data, but rather to get students started with the analysis of these data and constructing
measures of realized volatility in R. To this goal, we will use the highfrequency package which provides
several useful functions for data handling and construction of realized volatility measures.

The two main financial markets that provide high-frequency data are the FOREX and the US equity
markets. The latter is contained in the TAQ (Trade And Quote) database which contains all trades
(including quantity traded) and quotes for all listed stocks since the early 1990s. Contrary to this
centralized market, the FOREX market is decentralized and there are only observations for quote of
many currency pairs but no transaction data. An interesting issue of the FOREX market is that it is
always open and geographically disperse since the trading day starts in Tokyo, which is followed by the
opening of the London market, and finally by New York. In this Chapter we will consider exchange rates
high-frequency data from TrueFX, a data provider which allows free access to high-frequency quote data
from many years upon registration.

One big hurdle that we will encounter in this Chapter is that financial markets produce lots of data which
require better data-handling tools and more computer power that has been needed so far. So, when you
load the dataset, hold your breath and hope that your computer doesn’t crash!
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6.1 Data management

Register for free to TrueFX and you will be able to download high-frequency data for a wide set of
currencies. Due to the large amount of quotes, the data are provided in monthly files. For example, to
load R the file for December 2013 of the USD/JPY (U.S. Dollar vs Japanese Yen) with the command
data <- read.csv('USDJPY-2013-12.csv', header=FALSE) which took 14 seconds on a Intel Core i5
2.6 GHz and 8GB of RAM machine. Let’s first have a look at the data:

V1 V2 V3 V4
1 USD/JPY 20131202 00:00:00.320 102.488 102.495
2 USD/JPY 20131202 00:00:03.172 102.489 102.496
3 USD/JPY 20131202 00:00:03.732 102.490 102.496
4 USD/JPY 20131202 00:00:04.413 102.490 102.497
5 USD/JPY 20131202 00:00:09.104 102.490 102.497

The first column V1 represents the currency pair, the second column provides the date and time of the
quote, and the third and forth columns represent the bid and ask quotes. The file consists of a total
of 2276644 quotes that were produced in that month. Before starting to work on the data, we need to
define the dataset as a time series object and it is thus important that we undestand the time format
of the data provider and how to implement it in R. The first observation of the file is dated 20131202
00:00:00.320, that provides the day of the quote in the format YYYYMMDD followed by the time of the
day in the format hh:mm:ss, with the seconds going from 00.000 to 61.000 that includes three decimals.
The need to fraction the seconds is due to the high speed at which quotes and trades are produced
in financial markets. So, the next step is to define the object data as a time series which requires to
convert the second column of the file using the following command datetime <- strptime(data[,2],
format="%Y%m%d %H:%M:%OS") which produces the following object1:

[1] "2013-12-02 00:00:00.320 EST" "2013-12-02 00:00:03.172 EST" "2013-12-02 00:00:03.732 EST"
[4] "2013-12-02 00:00:04.413 EST" "2013-12-02 00:00:09.104 EST" "2013-12-02 00:00:15.895 EST"

We are now ready to define the file as a time series object in R and we are going to use the xts package
which is particularly suitable to handle time and dates for high-frequency data. We discard the first and
second columns, and just focus on the bid/ask quotes as shown below:
library(xts)
rate <- as.xts(data[,3:4], order.by=datetime)
colnames(rate) <- c("bid","ask")
head(rate)

bid ask
2013-12-02 00:00:00.319 102.488 102.495
2013-12-02 00:00:03.171 102.489 102.496
2013-12-02 00:00:03.732 102.490 102.496
2013-12-02 00:00:04.413 102.490 102.497
2013-12-02 00:00:09.104 102.490 102.497
2013-12-02 00:00:15.894 102.491 102.497

1To make the seconds appear with three decimals you need also to set ‘op <- options(digits.secs =3)‘

http://www.truefxdata.com
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6.2 Aggregating frequency

We have now created the xts object rate which contains the bid and ask quotes for the USD/JPY
exchange rate in the month of December 2013. One of the first tasks in analyzing high-frequency data
is to sub-sample the quotes at higher frequencies, such as 30 seconds, 1 or 5 minutes. One reason for
sub-sampling is that at the second and micro-second level the quote and price changes are very small
and contaminated by market microstructre noise, that is, erratic movements due to behavior of market
participants interacting in the market rather than, for example, informational issues. A practical benefit
of subsampling is that we discard many of the 2276644 observations and are able to work with smaller
datasets which are easier to plot and analyze.

As an example, let’s say that we want to sub-sample the dataset at the 1 minute frequency. We achieve
this by dividing the trading day in intervals of 1 minute and then pick the trade or quote that are closer
in time to the 1 minute interval. The highfrequency package provides several functions to manage
and analyze high-frequency data. The function aggregatets() has the purpose of aggregating the high-
frequency quotes and trades to the desired frequency in seconds or minutes. In the example below, we
sub-sample the mid-point between bid and ask USD/JPY exchange rate to the 1 minute frequency:
library(highfrequency)

midrate <- (rate[,1]+rate[,2])/2
names(midrate) <- "midpoint"

midrate1m <- aggregatets(midrate, on="minutes", k=1)
head(midrate1m)

midpoint
2013-12-02 00:01:00 102.525
2013-12-02 00:02:00 102.497
2013-12-02 00:03:00 102.505
2013-12-02 00:04:00 102.495
2013-12-02 00:05:00 102.495
2013-12-02 00:06:00 102.493

The first observation corresponds to the last quote before 0, 1, 0, 2, 11, 113, 1, 335, 0, EST, -18000 as
we can verify from analyzing the full dataset in the neighborhood of the first minute and all other quotes
are discarded:

midpoint
2013-12-02 00:00:55.415 102.525
2013-12-02 00:00:55.592 102.525
2013-12-02 00:01:01.940 102.525
2013-12-02 00:01:06.908 102.526

The result of the aggregation is a significant reduction of the sample size from 2276644 to 43096. We can
now plot the time series of the exchange rate in December 2013 and the graph is shown below. It appears
that there are periods in which the exchange rate is constant, which corresponds to weekends in which
there is not much activity.
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Since there is no price dynamics during weekends, we could decide to eliminate them from the sample
and this can be achieved by eliminating the observations during the weekend as in the code below:
index <- .indexwday(midrate1m)
unique(index)

[1] 1 2 3 4 5 6 0

# keep only Monday to Friday (day 1 to 5)
midrate1m <- midrate1m[index %in% 1:5]
plot(midrate1m, main="", type="p", pch=1, cex=0.05)
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The plot looks similar to the earlier one because the line plot connects the By eliminating the week-ends
the time series has reduced from 43096 to 31576.

The next thing is to calculate the returns that represent the percentage changes of the exchange rate at
the 1 minute frequency. Below we calculate the returns and some summary statistics:
ret1m <- 100 * diff(log(midrate1m))
summary(ret1m)

Index midpoint
Min. :2013-12-02 00:01:00.00 Min. :-0.385477
1st Qu.:2013-12-09 11:34:45.00 1st Qu.:-0.005270
Median :2013-12-16 23:08:30.00 Median : 0.000000
Mean :2013-12-16 09:41:51.10 Mean : 0.000085
3rd Qu.:2013-12-24 10:42:15.00 3rd Qu.: 0.005359
Max. :2013-12-31 22:16:00.00 Max. : 0.491053

NA's :1

The mean and median are very close to zero with a minimum return of -0.385477% and maximum of
0.491053%. The standard deviation is 0.013521% which is expressed in terms of the 1-minute return.

6.3 Realized Volatility

One of the important applications of high-frequency data is to calculate non-parametric measures of
volatility which are alternative to the GARCH modeling approach. These measures are then used to
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build a model to explain the volatility dynamics as well as for forecasting volatility. The simplest measure
of realized volatility in day t is given by the sum of the square intra-day returns at frequency m (for
a total of M returns in day t). In formula:

RVt =
M∑

m=1
R2

t,m

where Rt,m represents the m-th interval at a certain frequency of day t. This can be implemented
quite easily in R by selecting the intra-day return of each day, squaring them, and summing them up
to produce the volatility measure in that day. However, we can avoid the programming effort since
the highfrequency package provides functions to calculate the realized volatility measure at the chosen
frequency. The rCov() function allows to calculate the realized volatility for the specificied return time
series and at the appropriate frequency:
rv1m <- rCov(ret1m, align.by="minutes", align.period=1)
plot(rv1m^0.5, ylim=c(0, 1.1*max(rv1m^0.5)), main="", type="b")
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The plot shows the time series of realized volatility for the daily return of the USD/JPY in December
2013 obtained from the 1 minute returns. An important choice that has to be made concerns the time
interval to use for the intra-day returns. Ideally, we would like to calculate returns over short intervals
which would allow to increase the sample size of square returns of each day that the realized volatility
is calculated. On the other hand, very high-frequency returns introduce microstructure noise that might
bias the volatility measure and increase the variability of the volatility measure. In the example below, we
compare realized volatility measures from returns at the 10 seconds, 1 minute, and 10 minutes frequency.
The results show that the measure obtained from the 10-seconds return overall tracks the measures
obtained with the higher frequencies, except for December 26th, 2013, when the volatility calculated
on the 10-sec returns spikes up to almost 1% whilst the other two measures stay below 0.4% on that
day. Overall, there is no optimal way to choose the interval to use, but for a wide class of assets many
researchers have converged on using the 5-minute frequency to calculate realized volatility measures.
rv10s <- rCov(ret10s, align.by="seconds", align.period=10)
rv10m <- rCov(ret10m, align.by="minutes", align.period=10)
plot(as.Date(index(rv10s), format="%Y%m%d"),rv10s^0.5, ylim=c(0, maxy), main="", lty=1) # black continuous
lines(as.Date(index(rv1m), format="%Y%m%d"), rv1m^0.5, col=2, lty=2, lwd=2) # red dashed
lines(as.Date(index(rv10m), format="%Y%m%d"), rv10m^0.5, col=3, lty=3, lwd=2) # green dots
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The realized volatility measure RVt is criticized because it is not robust to microstructure noise and to
outliers of jumps, as it is shown in the previous graph. An alternative to the RVt estimator is the median
RV estimator which consists of the taking the median of the intra-day returns
medrv5m <- medRV(ret5m, align.by="minutes", align.period=5)
plot(medrv5m^0.5, ylim=c(0,maxy), main="",lty=1)
lines(rv5m^0.5, col=2, lty=2, lwd=2)
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6.4 Modeling realized volatility

AR(1) model for realized volatility:

RVt = β0 + β1 ∗ RVt−1 + ϵt

Heterogeneous AR HAR(1) for realized volatlity:

RVt = β0 + β1 ∗ RVt−1 + β2 ∗ R̂V
5
t−1 + β3 ∗ R̂V

22
t−1 + ϵt

where the 5 and 22 day moving averages are defined as R̂V
5
t−1 =

∑5
j=1 Rt−j/5 and R̂V

22
t−1 =∑22

j=1 Rt−j/22.

To be completed.



Chapter 7

Measuring Financial Risk

The emergence of derivatives in the 1980s and several bankruptcies due to their misuse led the financial
industry and regulators to develop rules to measure the potential portfolio losses in adverse market
conditions. One of the goals of these efforts was to provide banks with a framework to determine the
capital needed to survive during periods of economic and financial distress. Measuring risk is a necessary
condition for managing risk: institutions need to be able to quantify the amount of risk they face to
effectively elaborate a strategy to mitigate the consequences of extreme negative events. The aim of this
Chapter is to discuss the application of some methods that have been proposed to measure financial risk,
in particular market risk which represents the potential losses deriving from adverse movements of equity
or currency markets, interest rates etc.

7.1 Value-at-Risk (VaR)

The VaR methodology was introduced in the early 1990s by the investment bank J.P. Morgan to measure
the minimum portfolio loss that an institution might face if an unlikely adverse event occurred at a certain
time horizon. Let’s define the profit/loss of a financial institution in day t+1 by Rt+1 = 100∗ln(Wt+1/Wt),
where Wt+1 is the portfolio value in day t + 1. Then Value-at-Risk (VaR) at 100(1 − α)% is defined as

P (Rt+1 ≤ V aR1−α
t+1 ) = α

where the typical values of α are 0.01 and 0.05. In practice, V aR1−α
t+1 is calculated every day and for

an horizon of 10 days (2 trading weeks). If V aR1−α
t+1 is expressed in percentage return it can be easily

transformed into dollars by multiplying the portfolio value in day t (denoted by Wt) with the expected
loss, that is, V aR1−α

t+1 = Wt ∗ (exp(V aR1−α
t+1 /100) − 1). From a statistical point view, 99% VaR represents

the 1% quantile, that is, the value of Rt+1 such that there is only 1% probability that the random
variable takes a value smaller or equal to that value. The graphs below shows the Probability Density
Function (PDF) and the Cumulative Distribution Function (CDF). Risk calculation is devoted to the left
tail of the return distribution since it represents large and negative outcomes for the portfolio of financial
institutions. This is the reason why the profession has devoted a lot of energy to make sure that the left
tail, rather than the complete distribution, is appropriately specified since a poor model for the left tail
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Figure 7.1: The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) for
a normal distribution with mean µ and variance σ2. Value at Risk (V aR1−α) at 1 − α level represents
the α quantile of the distribution.

implies poor risk estimates (poor in a sense that will become clear in the backtesting section).

7.1.1 VaR assuming normality

Calculating VaR requires making an assumption about the distribution of the profit/loss of the institution.
The simplest and most familiar assumption we can introduce is that Rt+1 ∼ N(µ, σ2), where µ represents
the mean of the distribution and σ2 its variance. The assumption is equivalent to assume that the
profit/loss follows the model Rt+1 = µ + σϵt+1, with ϵt+1 ∼ N(0, 1). The quantiles for this model are
given by µ+zασ, where α is the probability level and zα represents the α quantile of the standard normal
distribution. The typical levels of α for VaR calculations are 1 and 5% and the corresponding zα are -1.64
and -2.33, respectively. Hence, 99% VaR under normality is obtained as follows:

V aR0.99
t+1 = µ − 2.33 ∗ σ

As an example, assume that an institution is holding a portfolio that replicates the S&P 500 Index and
wants to calculate the 99% VaR for this position. If we assume that returns are normally distributed,
then to calculate V aR0.99

t+1 we need to estimate the expected daily return of the portfolio (i.e., µ) and its
expected volatility (i.e., σ). Let’s assume that we believe that the distribution is approximately constant
over time so that we can estimate the mean and standard deviation of the returns over a long period of
time. In the illustration below we use the S&P 500 time series that was used in the volatility chapter
that consists of daily returns from 1990 to 2017 (6973 observations).
mu = mean(sp500daily)
sigma = sd(sp500daily)
var = mu + qnorm(0.01) * sigma

[1] -2.557

The 99% VaR is -2.557% and represents the minimum loss of holding the S&P500 for the following day
with 1% (or smaller) probability. If we use a shorter estimation window of one year (252 observations),
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Figure 7.2: 99% VaR for the daily returns of the SP 500 Index. The dots represent the days in which the
returns were smaller than VaR, also called violations or hits.

the V aR estimation would be -1.74%. The difference between the two VaR estimates is quite remarkable
given that we only changed the size of the estimation window. The standard deviation declines from
1.114% in the full sample to 0.77% in the shorter sample, whilst the mean changes from 0.034% to 0.05%.
As discussed in the volatility modeling Chapter, it is extremely important to account for time variation
in the distribution of financial returns if the interest is to estimate VaR at short horizons (e.g., a few days
ahead).

7.1.2 Time-varying VaR

So far we assumed that the mean and standard deviation of the return distribution are constant and
represent the long-run distribution of the variable. However, this might not be the best way to predict
the distribution of the profit/loss at very short horizons (e.g., 1 to 10 days ahead) if the return volatility
changes over time. In particular, in the volatility chapter we discussed the evidence that the volatility of
financial returns changes over time and introduced models to account for this behavior. We can model
the conditional distribution of the returns in day t + 1 by assuming that both µt+1 and σt+1 are time-
varying conditional on the information available in day t. Another decision that we need to make is the
distribution of the errors. We can assume, as above, that the errors are normally distributed so that 99%
VaR is calculated as:

V aR0.99
t+1 = µt+1 − 2.33 ∗ σt+1

where the expected return µt+1 can be either constant (i.e. µt+1 = µ), or an AR(1) process (µt+1 =
ϕ0 + ϕ1 ∗ Rt), and the conditional variance can be modeled as MA, EMA, or with a GARCH-type model.
In the example below, I assume that the conditional mean is constant (and equal to the sample mean)
and model the conditional variance of the demeaned returns as an EMA with parameter λ = 0.06:
library(TTR)
mu <- mean(sp500daily)
sigmaEMA <- EMA((sp500daily-mu)^2, ratio=0.06)^0.5
var <- mu + qnorm(0.01) * sigmaEMA
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The VaR time series shows in Figure 7.2 inherits the characteristic of the volatility of alternating between
calm periods of low volatility and risk, and other periods of increased uncertainty and potentially large
losses. For this example, we find that in 2.108% of the 6973 days the return was smaller relative to
VaR. Since we calculated VaR at 99% we expected to experience only 1% of days with violations and
the difference between the sample and population value might indicate that the risk model might be
misspecified. We will discuss the properties of the violations for a risk model in the section devoted to
backtesting.

7.1.3 Expected Shortfall (ES)

VaR represents the maximum (minimum) loss that is expected with, e.g., 99% (1%) probability. However,
it can be criticized on the ground that it does not convey the information of the potential loss that is
expected if indeed an extreme event (only likely 1% of less) occurs. For example, a VaR of -5.52% provides
no information on how large the portfolio loss is expected to be if the portfolio return will happen to be
smaller than VaR. That is, how large do we expect the loss be in case VaR is violated? A risk measure
that quantifies this potential loss is Expected Shortfall (ES) which is defined as

ES1−α
t+1 = E(Rt+1|Rt+1 ≤ V aR1−α

t+1 )

that is, the expected portfolio return conditional on being on a day in which the return is smaller than
VaR. This risk measure focuses its attention on the left tail of the distribution and it is highly dependent
on the shape of the distribution in that area, while it neglects all other parts of the distribution.

An analytical formula for ES is available if we assume that returns are normally distributed. In particular,
if Rt+1 = σt+1ϵt+1 with ϵt+1 ∼ N(0, 1), then VaR is calculated as V aR1−α

t+1 = zασt+1. The conditioning
event is that the return in the following day is smaller than VaR and the probability of this event happening
is α, e.g. 0.01. We then need to calculate the expected value of Rt+1 over the interval from minus
infinity to Rt+1 which corresponds to a truncated normal distribution with density function given by
f(Rt+1|Rt+1 ≤ V aR1−α

t+1 ) = ϕ(Rt+1)/Φ(V aR1−α
t+1 /σt+1), where ϕ(·) and Φ(·) represent the PDF and the

CDF of the normal distribution (i.e., Φ(V aR1−α
t+1 /σt+1) = Φ(zα) = α). We can thus express ES as

ES1−α
t+1 = −σt+1

ϕ(zα)
α

where zα is equal to -2.33 and -1.64 for α equal to 0.01 and 0.05, respectively. If we are calculating VaR
at 99% so that α is equal to 0.01 then ES is equal to

ES0.99
t+1 = −σt+1

ϕ(−2.33)
0.01

= −2.64σt+1

where the value −2.64 can be obtained in R typing the command (2*pi)ˆ(-0.5) * exp(-(2.33ˆ2)/2)
/ 0.01 or using the function dnorm(-2.33) / 0.01. If α = 0.05 then the constant to calculate ES is -2.08
instead of -1.64 for VaR. Hence, ES leads to more conservative risk estimates since the expected loss in a
day in which VaR is exceeded is always larger than VaR. This is shown in Figure 7.3 where the difference
between VaR and ES is plotted as a function of 1 − α:
sigma = 1
alpha = seq(0.001, 0.05, by=0.001)
ES = - dnorm(qnorm(alpha)) / alpha * sigma
VaR = qnorm(alpha) * sigma
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Figure 7.3: Comparison of the ES and VaR risk measures under the assumption of normally distributed
profit/loss at different values of α.

7.1.4
√

K rule

The Basel Accords require VaR to be calculated at a horizon of 10 days and for a risk level of 99%. In
addition, the Accords allow financial institution to scale up the 1-day VaR to the 10 day horizon by
multiplying it by

√
10. Why

√
10? Under what conditions is the VaR for the cumulative returns over 10

days, denoted by V aRt+1:t+10, equal to
√

10 ∗ V aRt+1?

In day t we are interested in calculating the risk of holding the portfolio over a horizon of K days, that
is, assuming that we can liquidate the portfolio only on the Kth day. Regulators require banks to use
K = 10 that corresponds to two trading weeks. To calculate risk of holding the portfolio in the next K

days we need to obtain the distribution of the sum of K daily returns or cumulative return, denoted by
Rt+1:t+k, which is given by

∑K
k=1 Rt+k = Rt+1 + · · · + Rt+K , where Rt+k is the return in day t + k. If

we assume that these daily returns are independent and identically distributed (i.i.d.) with mean µ and
variance σ2, then the expected value of the cumulative return is

E

(
K∑

k=1

Rt+k

)
=

K∑
k=1

µ = Kµ

and its variance is

V ar

(
K∑

k=1

Rt+k

)
=

K∑
k=1

σ2 = Kσ2

so that the standard deviation of the cumulative return is equal to
√

Kσ. If we maintain the normality
assumption that we introduced earlier, than the 99% V aR of Rt+1:t+K is given by

V aR1−α
t+1:t+K = Kµ − 2.33

√
Kσ

In this formula, the mean and standard deviation are estimated on daily returns and they are then scaled
up to horizon K.

This result relies on the assumption that returns are serially independent which allows us to set all
covariances between returns in different days equal to zero in the formula for the variance. The empirical
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evidence from the ACF of daily returns indicates that this assumption is likely to be accurate most of
the time, although in times of market booms or busts returns could be, temporarily, positively correlated.
What would be the effect of positive correlation in returns on VaR? The first-order covariance can be
expressed in terms of correlation as ρσ2, with ρ representing the first order serial correlation. To keep
things simple, assume that we are interested in calculating VaR for the two-day return, that is, K = 2.
The variance of the cumulative return is V ar(Rt+1 + Rt+2) which is equal to V ar(Rt+1) + V ar(Rt+2) +
2Cov(Rt+1, Rt+2) = σ2 +σ2 +2ρσ2. This can be re-written as 2σ2(1+ρ) which shows that in the presence
of positive correlation ρ the cumulative return becomes riskier, relative to the independent case, since
2σ2(1+ρ) > 2σ2. The Value-at-Risk for the two-day return is then V aR0.99

t+1:t+2 = 2µ−2.33∗σ∗
√

2
√

1 + ρ,
which is smaller relative to the VaR assuming independence that is given by 2µ − 2.33 ∗ σ ∗

√
2. Hence,

neglecting positive correlation in returns leads to underestimating risk and the potential portfolio loss
deriving from an extreme (negative) market movement.

7.1.5 VaR assuming non-normality

One of the stylized facts of financial returns is that the empirical frequency of large positive/negative
returns is higher relative to the frequency we would expect if returns were normally distributed. This
finding of fat tails in the return distribution can be partly explained by time-varying volatility: the
extreme returns are the outcome of a regime of high volatility that occurs occasionally, although most of
the time returns are in a calm period with low volatility. The effect of mixing periods of high and low
volatility is that the (unconditional) volatility estimate based on the full sample overestimates uncertainty
when volatility is low, and underestimates it in turbulent times. This can be illustrated with a simple
example: assume that in 15% of days volatility is high and equal to 5% while in the remaining 85% of
the days it is low and equal to 0.5%. Average volatility based on all observations is then 0.15 * 5 + 0.85 *
0.5 = 1.175%. This implies that in days of high volatility, the returns appear large relative to a standard
deviation of 1.175% although they are normal considering that they belong to the high volatility regimes
with a standard deviation of 5. On the other hand, the bulk of returns belong to the low volatility regime
which looks like a concentration of small returns relative to the average volatility of 1.175%.

To evaluate the evidence of deviation from normality, we can calculate the sample skewness and ex-
cess kurtosis for the standardized residuals and compare them to the their theoretical value of 0. The
skewness of the returns standardized by the EMA volatility estimate is -0.177 and the excess kurtosis
is estimated equal to 0.125. Both statistics indicate that the standardized residuals are not close to
normality due to the presence of large residuals (kurtosis) in the left tail of the distribution (skewness).
This evidence is very important for risk measurement which is mostly concerned with the far left of the
distribution: time-variation in volatility is the biggest factor driving non-normality in returns so that
when we calculate risk measures we are confident that a combination of the normal distribution and a
dynamic method to forecast volatility should provide reasonably accurate VaR estimates. However, we
still might want to account for the non-normality in the standardized returns ϵt and we will consider two
possible approaches in this Section.

One approach to relax the assumption of normally distributed errors is the Cornish-Fisher approximation
which consists of performing a Taylor expansion of the normal distribution around its mean. This has the
effect of producing a distribution which is a function of skewness and kurtosis. We skip the mathematical
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details of the derivation and focus on the VaR calculation when this approximation is adopted. If we
assume the mean µ is equal to zero, the 99% VaR for normally distributed returns is calculated as
−2.33 ∗ σt+1 or, more generally, by zασt+1 for 100(1 − α)% VaR, where zα represents the 1 − α-quantile
of the standard normal distribution. With the Cornish-Fisher (CF) approximation VaR is calculated in a
similar manner, that is, V aR1−α

t+1 = zCF
α σt+1, with the quantile zCF

α calculated as follows:

zCF
α = zα + SK

6
[
z2

α − 1
]

+ EK

24
[
z3

α − 3zα

]
+ SK2

36
[
2z5

α − 5zα

]
where SK and EK represent the skewness and excess kurtosis, respectively. If the data are normally
distributed then SK = EK = 0 so that zCF

α = zα. However, in case the distribution is asymmetric
and/or with fat tails the effect is that zCF

α ≤ zα. In practice, we estimate the skewness and the excess
kurtosis from the sample and use those values to calculate the quantile for VaR calculations. Figure 7.4
we show the quantile zCF

0.01 and its relationship to z0.01 as a function of the skewness and excess kurtosis
parameters. The left plot shows the effect of the skewness parameter on the quantile, while holding the
excess kurtosis equal to zero. Instead, the plot on the right shows the effect of increasing values of excess
kurtosis, while the skewness parameter is kept constant and equal to zero. As expected, the zCF

0.01 is
smaller than z0.01 = −2.33 and it is interesting to notice that negative skewness increases the (absolute)
value of zCF

0.01 more than positive skewness of the same magnitude. This is due to the fact that negative
skewness implies a higher probability of large negative returns compared to large positive returns. The
effect on VAR of accounting for asymmetry and fat tails in the data is thus to provide more conservative
risk measures.
alpha = 0.01
# case 1: skewness holding excess kurtosis equal to 0
EK = 0; SK = seq(-1, 1, by=0.05)
z = qnorm(alpha)
zCF = z + (SK/6) * (z^2 - 1) + (EK/24) * (z^3 - 3 * z) +
(SK^2/36) * (2*z^5 - 5*z)

q1 <- ggplot() + geom_line(aes(SK,zCF), color="seagreen4") +
labs(x="Skewness", y=expression(z[alpha])) +
geom_hline(yintercept=rep(z, length(SK)), linetype="dashed", size=1.2) + theme_bw() +
coord_cartesian(y=c(-7.1, -1.9))

# case 2: kurtosis holding skewness equal to 0
EK1 = seq(0, 10,by=0.1); SK1 = 0

An alternative approach to allow for non-normality is to make a different distributional assumption for
ϵt+1 that captures the fat-tailness in the data. A distribution that is often considered is the t distribution
with a small number of degrees of freedom. Since the t distribution assigns more probability to events
in the tail of the distribution, it will provide more conservative risk estimates relative to the normal
distribution1. Figure 7.5 shows the t distribution for 4, 10, and ∞ degree-of-freedom, while the plot on
the right zooms on the shape of the left tail of these distributions. It is clear that the smaller the d.o.f
used the more likely are extreme events relative to the standard normal distribution (d.o.f. = ∞). So,
also this approach delivers more conservative risk measures relative to the normal distribution since it
assigns higher probability to extreme events.

1The standard normal distribution is a t distribution with ∞ degrees of freedom. In practice, for 100 or more degrees of
freedom the quantiles of the t and standard normal are almost identical.
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Figure 7.4: The effect of skewness and kurtosis on the critical value used in the Cornish-Fisher approxi-
mation approach.

q1 <- ggplot(data.frame(x = c(-8, 8)), aes(x = x)) +
stat_function(fun = dnorm, aes(colour = "N(0,1)")) +
stat_function(fun = dt, args = list(df=4), aes(colour = "t(4)")) +
stat_function(fun = dt, args = list(df=10), aes(colour = "t(10)")) +
theme_bw() + labs(x = NULL, y= NULL) + coord_cartesian(x=c(-3,3)) +
scale_colour_manual("Distribution", values = c("seagreen3", "steelblue3", "tomato3")) +
theme(legend.position="bottom")

q2 <- q1 + coord_cartesian(x=c(-8, -3), y=c(0,0.03))

To be able to use the t distribution for risk calculation we need to estimate the degree-of-freedom param-
eter, denoted by d. In the context of a GARCH volatility model this can be easily done by considering
d as an additional parameter to be estimated by maximizing the likelihood function based on the as-
sumption that the ϵt+1 shocks follow a td distribution. A simple alternative approach to estimate the
degree-of-freedom parameter d exploits the fact that the excess kurtosis of a td distribution is equal to
EK = 6/(d − 4) (for d > 4) which is only a function of the parameter d. Thus, based on the sample
excess kurtosis we can then back out an estimate of d. The steps are as follows:

1. estimate by ML the GARCH model assuming that the errors are normally distributed (or using
EMA)

2. calculate the standardized residuals as ϵt+1 = Rt+1/σt+1

3. estimate the excess kurtosis of the standardized residuals and obtain d as d = 6/EK + 4

For the standardized returns of the S&P 500 the sample excess kurtosis is equal to 2.337 so that the
estimate of d is equal to approximately 7 which indicates the need for a fat-tailed distribution. In
practice, it would be advisable to estimate the parameter d jointly with the remaining parameters of the
volatility model, rather than separately. Still, this simple approach provides a starting point to evaluate
the usefulness of fat tailed distributions in risk measurement.
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Figure 7.5: Comparison of the standard normal distribution and t distribution with 4 and 10 degree-of-
freedom. The right plot zooms on the left tail of the three distributions.

7.2 Historical Simulation (HS)

So far we discussed methods to calculate VaR that rely on choosing a probability distribution and a
volatility model. A distributional assumption we made is that returns are normal, which we later relaxed
by introducing the Cornish-Fisher approximation and the t distribution. In terms of the volatility model,
we considered several possible specifications such as EMA, GARCH, and GJR-GARCH, which we can
compare using selection criteria.

An alternative approach that avoids making any assumption and let the data speak for itself is represented
by Historical Simulation (HS). HS consists of calculating the empirical quantile of returns at 100 ∗ α%
level based on the most recent M days. This approach is called non-parametric because it estimates 99%
VaR to be the value such that 1% of the more recent M returns are smaller than, without introducing
assumptions on the return distribution and the volatility structure. In addition to its flexibility, HS is
very easy to compute since it does not require the estimation of any parameter for the volatility model
and the distribution. However, there are also a few difficulties in using HS to calculate risk measures.
One issue is the choice of the estimation window size M. Practitioners often use values between M=250 and
1000, but, similarly to the choice of smoothing in MA and EMA, this is an ad hoc value that has been
validated by experience rather than being optimally selected based on a criterion. Another complication
is that HS applied to daily returns provides a VaR measure at the one day horizon which, for regulatory
purposes, should then be converted to a 10-day horizon. What is typically done is to apply the

√
10 rule

discussed before, although it does not have much theoretical justification in the context of HS since we are
not actually making any assumption about the return distribution. An alternative would be to calculate
VaR as the 1% quantile of the (non-overlapping) cumulative return instead of the daily return. However,
this would imply a much smaller sample size, in particular for small M.

The implementation in R is quite straightforward and shown below. The function quantile() calcu-
lates the 1 − α quantile for a return series which we can combine with the function rollapply()
from package zoo to apply it recursively to a rolling window of size M. For example, the command
rollapply(sp500daily, 250, quantile, probs=alpha, align="right") calculates the function
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Figure 7.6: Returns and 99% VaR for the Historical Simulation (HS) method with parameter M set to
250 and 1000 days.

quantile (for probs=alpha and alpha=0.01) for the sp500daily time series with the first VaR fore-
cast for day 251 until the end of the sample. Figure 7.6 compares VaR calculated with the HS method
for an estimation window of 250 and 1000 days. The shorter estimation window makes the VaR more
sensitive to market events as opposed to M=1000 that changes very slowly. A characteristic of HS for
M=1000 is that it is constant for long periods of time, even though volatility might have significantly
decreased for several months.
M1 = 250
M2 = 1000
alpha = 0.01
hs1 <- rollapply(sp500daily, M1, quantile, probs=alpha, align="right")
hs2 <- rollapply(sp500daily, M2, quantile, probs=alpha, align="right")

mydata <- merge(hs1, hs2) %>% fortify %>%
tidyr::gather(Variable, Value, -Index)

ggplot() + geom_line(aes(index(sp500daily), sp500daily), color="gray70") +
geom_line(data=mydata, aes(Index, Value, color=Variable), size=1.2) +
coord_cartesian(y=c(min(sp500daily, na.rm=T), 0)) + theme_bw() +
labs(x=NULL, y=NULL, title="Historical Simulation") + theme(legend.position="bottom")

How good is the risk model? One metric that is used as an indicator of goodness of the risk model is the
frequency of returns that are smaller than VaR, that is,

∑T
t=1 I(Rt+1 ≤ V aRt+1)/T , where T represents

the total number of days and I(·) denotes the indicator function. A good risk model should have the
frequency of violations or hits close to the level 1 − α for which VaR is calculated. If we are calculating
VaR at 99% then we would expect that the model shows (approximately) 1% violations. For HS above, we
have that for VaR calculated on the 250 window there are 1.334% of days that represent violations. For
the longer window of M=1000 the violations of VaR represents 1.276% of the sample. For HS, we thus
find that they are larger than expected and in the backtesting Section we will evaluate if the difference
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Figure 7.7: 99% VaR for the SP 500 based on the HS(250) and EMA(0.06) methods.

from the theoretical value of 1% is statistically significant.

In Figure 7.7, the VaR calculated from HS is compared to the EMA forecast. Although the VaR level and
the dynamics is quite similar, HS changes less rapidly and remains constant for long periods of time, in
particular in periods of rapid changes in market volatility.
library(TTR)
ema <- - 2.33 * EMA(sp500daily^2, ratio=0.06)^0.5

7.3 Simulation Methods

We discussed several approaches that can be used to calculate VaR based on parametric assumptions or
that are purely non-parametric in nature. In most cases we demonstrated the technique by forecasting
Value-at-Risk at the 1-day horizon. However, for regulatory purposes the risk measure should be
calculated at a horizon of 10 days. An approach that is widely used by practitioners and that is also
allowed by regulators is to scale up the 1-day VaR to 10-day by multiplying it by

√
10.

An alternative is to use simulation methods that generate artificial future returns based on the risk
model. The model makes assumptions about the volatility model, and the distribution of the error term.
Using simulations we are able to produce a large number of future possible paths for the returns that are
conditional on the current day. In addition, it becomes very easy to obtain the distribution of cumulative
returns by summing daily simulated returns along a path. We will consider two popular approaches that
differ in the way simulated shocks are generated: Monte Carlo Simulation (MC) consists of iterating the
volatility model based on shocks that are simulated from a certain distribution (normal, t or something
else), and Filtered Historical Simulation (FHS) that assumes the shocks are equal to the standardized
returns and takes random sample of those values. The difference is that FHS does not make a parametric
assumption for the ϵt+1 (similarly to HS), while MC does rely on such assumption.
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7.3.1 Monte Carlo Simulation

At the closing of January 22, 2007 and September 29, 2008 the risk manager needs to forecast the
distribution of returns from 1 up to K days ahead2, including the cumulative or multi-period returns over
these horizons. The model for returns is Rt+1 = σt+1ϵt+1, where σt+1 is the volatility forecast based on
the information available up to that day. The ϵt+1 are the random shocks that the risk manager assumes
are normally distributed with mean 0 and variance 1. A Monte Carlo simulation of the future distribution
of the portfolio returns requires the following steps:

1. Estimation of the volatility model: we assume that σt+1 follows a GARCH(1,1) model and estimate
the model by ML using all observations available up to and including that day. Below is the code
to estimate the model using the rugarch package. The volatility forecast for the following day is
0.483% which is significantly lower relative to the sample standard deviation from January 1990
to January 2007 of 0.993%. To use some terminology introduced earlier, the conditional forecast
(0.483%) is lower relative to the unconditional forecast (0.993%).

lowvol = as.Date("2007-01-22")
spec = ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0), include.mean=FALSE))
fitgarch = ugarchfit(spec = spec, data = window(sp500daily, end=lowvol))
gcoef <- coef(fitgarch)
sigma <- ugarchforecast(fitgarch, n.ahead=1)@forecast$sigmaFor

omega alpha1 beta1
0.005 0.054 0.942

2007-01-22
T+1 0.483

2. The next step consists of simulating a large number of return paths, say S, that are consistent with
the model assumption that Rt+1 = σt+1ϵt+1. This is done by generating values for the error term
ϵt+1 from a certain distribution and multiply these values by the forecast σt+1 = 0.483. Generating
random variables can be easily done in R using the command rnorm() which returns random values
from the standard normal distribution (and rt() does the same for the t distribution). Denote by
ϵs,t+1 the s-th simulated value of the shock (for s = 1, · · · , S), then the s-th simulated value of the
return is produced by multiplying σt+1 and ϵs,t+1, that is, Rs,t+1 = σt+1ϵs,t+1.

3. The next step is to use the simulate returns Rs,t+1 to predict volatility next period, denoted
by σs,t+2. Since we have assumed a GARCH specification the volatility forecast is obtained by
(σs,t+2)2 = ω + αR2

s,t+1 + βσ2
t+1 and the (simulated) returns at time t + 2 are obtained as Rs,t+2 =

σs,t+2ϵs,t+2, where ϵs,t+2 represent a new set of simulated values for the shocks in day t + 2.

4. Continue the iteration to calculate σs,t+k and Rs,t+k for k = 1, · · · , K. The cumulative or multi-
period return between t + 1 and t + k is then obtained as Rs,t+1:t+K =

∑k
j=1 Rs,t+j .

The code below shows how a MC simulation can be performed and Figure 7.8 shows the quantiles of
Rs,t+k as a function of k on the left plot and the quantiles of σs,t+k on the right plot (from 0.10 to 0.90 at
intervals of 0.10 in addition to 0.05 and 0.95). The volatility is branching out from σt+1 = 0.483 and its
uncertainty increases with the forecast horizon. The green dashed line represents the average (over the

2The regulator requires K = 10 but in the following analysis we consider K = 250 to evaluate the distributional
characteristics of VaR at longer horizons.
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Figure 7.8: Quantiles of the simulated return and volatility distributions forecast in January 22, 2007

simulations) volatility at horizon k that, as expected for GARCH models, tends toward the unconditional
mean of volatility. Since January 22, 2007 was a period of low volatility, the graph shows that we should
expect volatility to increase at longer horizons. This is also clear from the left plot where the return
distribution becomes wider as the forecast horizon progresses.
set.seed(9874)

S = 10000 # number of MC simulations
K = 250 # forecast horizon

# create the matrices to store the simulated return and volatility
R = xts(matrix(sigma*rnorm(S), K, S, byrow=TRUE), order.by=futdates)
Sigma = xts(matrix(sigma, K, S), order.by=futdates)

# iteration to calculate R and Sigma based on the previous day
for (i in 2:K)
{
Sigma[i,] = (gcoef['omega'] + gcoef['alpha1'] * R[i-1,]^2 +

gcoef['beta1'] * Sigma[i-1,]^2)^0.5
R[i,] = rnorm(S) * Sigma[i,]

}

How would the forecasts of the return and volatility distribution look like if they were made in a period
of high volatility? To illustrate this scenario we consider September 29, 2008 as the forecast base. The
GARCH(1,1) forecast of volatility for the following day is 3.085% and the distribution of simulated returns
and volatilities are shown in Figure 7.9. Since the day was in a period of high volatility, the assumption
of stationarity of volatility made by the GARCH model implies that volatility will reduce in the future.
This is clear from the return quantiles converging in the left plot, as well as from the declining average
volatility in the right plot.
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Figure 7.9: Quantiles of the simulated return and volatility distributions forecast in September 29, 2008

The cumulative or multi-period return can be easily obtained by the R command cumsum(Ret) where
Ret represents the K by S matrix of simulated one-day returns that the function cumulatively sums over
the columns. The outcome is also a K by S matrix with each column representing a possible path of the
cumulative return from 1 to K steps ahead. Figure 7.10 shows the quantiles at each horizon k calculated
across the S simulated cumulative returns. The quantile at probability 0.01 represents the 99% VaR
that financial institutions are required to report for regulatory purposes (at the 10 day horizon). The
left plot represents the distribution of expected cumulative returns conditional on being on January 22,
2007 while the right plot is conditional on September 29, 2008. The same scale of the y-axis for both
plots highlights the striking difference in the dispersion of the distribution of future cumulative returns.
Although we saw above that the volatility of daily returns is expected to increase after January 22, 2007
and decrease following September 29, 2008, the levels of volatility in these two days are so different that
when accumulated over a long period of time they lead to very different distributions for the cumulative
returns.

MC simulations make also easy to calculate ES. For each horizon k, ES can be calculated as the average
of those simulated returns that are smaller than VaR. The code below shows these steps for the two dates
considered and Figure 7.11 compare the two risk measures conditional on being on January 22, 2007
and on September 29, 2008. Similarly to the earlier discussion, ES provides a larger (in absolute value)
potential loss relative to VaR, a difference that increases with the horizon k.
VaR = xts(apply(Rcum, 1, quantile, probs=0.01), order.by=futdates)
VaRmat = matrix(VaR, K, S, byrow=FALSE)
Rviol = Rcum * (Rcum < VaRmat)
ES = xts(rowSums(Rviol) / rowSums(Rviol!=0), order.by=futdates)
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Figure 7.10: Quantiles of the simulated distribution of the cumulative return produced in January 22,
2007 (left) and in September 29, 2008 (right).
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Figure 7.11: VaR and ES for holding periods from 1 to 250 days produced in January 22, 2007 (left) and
in September 29, 2008 (right).
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7.3.2 Filtered Historical Simulation (FHS)

Filtered Historical Simulation (FHS) combines aspects of the parametric and the HS approaches to risk
calculation. This is done by assuming that the volatility of the portfolio return can be modeled with, e.g.,
EMA or a GARCH specification, while the non-parametric HS approach is used to model the standardized
returns ϵt+1 = Rt+1/σt+1. It can be considered a simulation method since the only difference with the MC
method discussed above is that the random draws from the standardized returns are used to generate
simulated returns instead of draws from a parametric distribution (e.g., normal or t). This method
might be preferred when the risk manager is uncomfortable making assumptions about the shape of the
distribution, either in terms of the thickness of the tails or the symmetry of the distribution. In R this
method is implemented by replacing the command rnorm(S) that generates a random normal sequence
of length S with sample(std.resid, S, replace=TRUE), where std.resid represents the standardized
residuals. This command produces a sample of length S of values randomly taken from the std.resid
series. Hence, we are not generating new data, but we are simply taking different samples of the same
standardized residuals so that to preserve their distributional properties.

Figure 7.12 compares the MC and FHS approaches in terms of the expected volatility of the daily returns
(i.e., average volatility at each horizon k across the S simulations) and 99% VaR (i.e., 0.01 quantile of the
simulated cumulative returns) for the two forecasting dates that we are considering. The expected future
volatility by FHS converges at a slightly lower speed relative to MC during periods of low volatility, while
the opposite is true when the forecasting point occurs during a period of high volatility. This is because
FHS does not restrict the shape of the distribution on the left tail (as MC does given the assumption
of normality) so that large negative standardized returns contribute to determine future returns and
volatility. Of course, this result is specific to the S&P 500 daily returns that we are considering as an
illustrative portfolio and it might be different when analyzing other portfolio returns.

In terms of VaR calculated on cumulative returns we find that FHS predicts lower risk relative to MC at
long horizon, with the difference becoming larger and larger as the horizon K progresses. Hence, while at
short horizons the VaR forecasts are quite similar, they become increasingly different at longer horizon.
# standardized residuals
std.resid = as.numeric(residuals(fitgarch, standardize=TRUE))
std.resid1 = as.numeric(residuals(fitgarch1, standardize=TRUE))

for (i in 2:K)
{
Sigma.fhs[i,] = (gcoef['omega'] + gcoef['alpha1'] * R.fhs[i-1,]^2 +

gcoef['beta1'] * Sigma.fhs[i-1,]^2)^0.5
R.fhs[i,] = sample(std.resid, S, replace=TRUE) * Sigma.fhs[i,]
Sigma.fhs1[i,] = (gcoef1['omega'] + gcoef1['alpha1'] * R.fhs1[i-1,]^2 +

gcoef1['beta1'] * Sigma.fhs1[i-1,]^2)^0.5
R.fhs1[i,] = sample(std.resid1, S, replace=TRUE) * Sigma.fhs1[i,]

}
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Figure 7.12: Comparison of MC and FHS volatility and 99% VaR produced in January 22, 2007 (left)
and in September 29, 2008 (right).

7.4 VaR for portfolios

So far we discussed the simple case of a portfolio composed of only one asset and calculated the Value-at-
Risk for such position. However, financial institutions hold complex portfolios that include many assets
and expose them to several types of risks. How do we calculate V aR for such diversified portfolios?

Let’s first characterize the portfolio return as a weighted average of the individual asset returns, that is,

Rp
t+1 =

J∑
j=1

wjRt+1,j

where Rp
t represents the portfolio return in day t, and wj and Rj,t are the weight and return of asset j in

day t (and there is a total of J assets). To calculate VaR for this portfolio we need to model the distribution
of Rp

t . If we assume that the underlying assets are normally distributed, then also the portfolio return
is normally distributed and we only need to estimate its mean and standard deviation. In the case of 2
assets (i.e., J = 2) the expected return of the portfolio return is given by

E(Rp
t+1) = µt+1,p = w1µt+1,1 + w2µt+1,2

which is the weighted average of the expected return of the individual assets. The portfolio variance is
equal to

V ar(Rp
t+1) = σ2

t+1,p = w2
1σ2

t+1,1 + w2
2σ2

t+1,2 + 2w1w2ρt+1,12σt+1,1σt+1,2
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which is a function of the individual (weighted) variances and the correlation between the two assets, ρ1,2.
The portfolio Value-at-Risk is then given by

V aR0.99
t+1,p = µt+1,p − 2.33σt+1,p

= w1µt+1,1 + w2µt+1,2 − 2.33
√

w2
1σ2

t+1,1 + w2
2σ2

t+1,2 + 2w1w2ρt+1,12σt+1,1σt+1,2

In case it is reasonable to assume that µ1 = µ2 = 0, the V aR0.99
t,p formula can be expressed as follows:

V aR0.99
p,t = −2.33

√
w2

1σ2
t+1,1 + w2

2σ2
t+1,2 + 2w1w2ρt+1,12σt+1,1σt+1,2

= −
√

2.332w2
1σ2

t+1,1 + 2.332w2
2σ2

t+1,2 + 2 ∗ 2.332w1w2ρt+1,12σt+1,1σt+1,2

= −
√

(V aR0.99
t+1,1)2 + (V aR0.99

t+1,2)2 + 2 ∗ ρt+1,12V aR0.99
t+1,1V aR0.99

t+1,2

which shows that the portfolio VaR in day t can be expressed in terms of the individual VaRs of the assets
and the correlation between the two asset returns. Since the correlation coefficient ranges between ± 1,
the two extreme cases of correlation implies the following VaR:

• ρt+1,12 = 1: V aR0.99
t+1,p = −

(
|V aR0.99

t+1,1| + |V aR0.99
t+1,2|

)
the two assets are perfectly correlated and

the total portfolio VaR is the sum of the individual VaRs
• ρt+1,12 = −1: V aR0.99

t+1,p = −|V aR0.99
t+1,1 − V aR0.99

t+1,2| the two assets have perfect negative correlation
then the total risk of the portfolio is given by the difference between the two VaRs since the risk in
one asset is offset by the other asset, and vice versa.

In the Equations above we added a t subscript also to the correlation coefficient, that is, ρt+1,12 represents
the correlation between the two asset conditional on the information available up to that day. There is
evidence supporting the fact that correlations between assets might be changing over time in response
to market events or macroeconomic shocks (e.g., a recession). In the following Section we discuss some
methods that can be used to model and predict correlations.

7.4.1 Modeling correlations

A simple approach to modeling correlations consists of using MA and EMA smoothing similarly to the
case of forecasting volatility. However, in this case the object to be smoothed is not the square return,
but the product of the returns of asset 1 and 2 (N.B.: we are implicitly assuming that the mean of both
assets can be set equal to zero). Denote the return of asset 1 by Rt,1, of asset 2 by Rt,2, and by σt,12 the
covariance between the two assets in day t. We can estimate σ12,t by a MA of M days:

σt+1,12 = 1
M

M∑
m=1

Rt−m+1,1Rt−m+1,2

and the correlation is then obtained by dividing the covariance estimate with the standard deviation of
the two assets, that is:

ρt+1,12 = σt+1,12/ (σt+1,1 ∗ σt+1,2)

In case the portfolio is composed of J assets then there are J(J − 1)/2 asset pairs for which we need
to calculate correlations. An alternative approach is to use EMA smoothing which can be implemented
using the recursive formula discussed earlier:

σt+1,12 = (1 − λ)σt,12 + λRt,1Rt,2
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Figure 7.13: Time-varying correlation between GLD and SPY estimated using EMA(0.06).

and the correlation is obtained by dividing the covariance by the forecasts of the standard deviations for
the two assets.

To illustrate the implementation in R we assume that the firm is holding a portfolio that invests a fraction
w1 in a gold ETF (ticker: GLD) and the remaining fraction 1 − w1 in the S&P 500 ETF (ticker: SPY). The
closing prices are downloaded from Yahoo Finance starting in Jan 03, 2005 and ending on Sep 01, 2017
and the goal is to forecast portfolio VaR for the following day. We will assume that the expected daily
returns for both assets are equal to zero and forecast volatilities and the correlation between the assets
using EMA with λ = 0.06. In the code below R represents a matrix with 3190 rows and two columns
representing the GLD and SPY daily returns.
data <- getSymbols(c("GLD", "SPY"), from="2005-01-01")
R <- 100 * merge(ClCl(GLD), ClCl(SPY))
names(R) <- c("GLD","SPY")
prod <- R[,1] * R[,2]
cov <- EMA(prod, ratio=0.06) # EMA for the product of returns
sigma <- do.call(merge, lapply(R^2, FUN = function(x) EMA(x, ratio=0.06)))^0.5
names(sigma) <- names(R)
corr <- cov / (sigma[,1] * sigma[,2])

The time series plot of the EMA correlation in Figure 7.13 shows that the dependence between the gold
and S&P 500 returns oscillates significantly around the long-run correlation of NA. In certain periods
gold and the S&P 500 have positive correlation as high as 0.81 and in other periods as low as -0.82.
During 2008 the correlation between the two assets became large and negative since investors fled the
equity market toward gold that was perceived as a safe haven during turbulent times. Based on these
forecasts of volatilities and correlation, portfolio VaR can be calculated in R as follows:
w1 = 0.5 # weight of asset 1
w2 = 1 - w1 # weight of asset 2
VaR = -2.33 * ( (w1*sigma[,1])^2 + (w2*sigma[,2])^2 +

2*w1*w2*corr*sigma[,1]*sigma[,2] )^0.5

The one-day portfolio Value-at-Risk fluctuates substantially between -0.64% and -8.01%, which occurred
during the 2008-09 financial crises. It is also interesting to compare the portfolio VaR with the risk
measure if the portfolio is fully invested in either asset. The time series graph below shows the VaR for
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Figure 7.14: 99% VaR for a portfolio of GLD and SPY.
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Figure 7.15: Comparison of 99% VaR for a portfolio invested in GLD and SPY, and for a position that
is fully invested in GLD or SPY.

three scenarios: a portfolio invested 50% in gold and equity, 100% gold, and 100% S&P 500. Portfolio VaR
is between the VaRs for the individual assets when correlation is positive. However, in those periods in
which the two assets have negative correlation (e.g., 2008) the portfolio VaR is higher than both individual
VaRs since the two assets are moving in opposite directions and the risk exposures partly offset each other.
VaRGLD = -2.33 * sigma[,1]
VaRSPY = -2.33 * sigma[,2]

7.5 Backtesting VaR

In the risk management literature backtesting refers to the evaluation/testing of the properties of a risk
model based on past data. The approach consists of using the risk model to calculate VaR based on the
information (e.g., past returns) that was available to the risk manager at that point in time. The VaR
forecasts are then compared with the actual realization of the portfolio return to evaluate if they satisfy
the properties that we expect should hold for a good risk model. One such characteristic is that the
coverage of the risk model, defined as the percentage of returns smaller than VaR, should be close to
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100*(1-α)%. In other words, if we are testing VaR with α equal to 0.01 we should expect, approximately,
1% of days with violations. If we find that returns were smaller than V aR significantly more/less often
than 1%, then we conclude that the model has inappropriate coverage. For the S&P 500 return and VaR
calculated using the EMA method the coverage is equal to
V = na.omit(lag(sp500daily,1) <= var)
T1 = sum(V)
TT = length(V)
alphahat = mean(T1/TT)

[1] 0.011

In this case, we find that the 99% VaR is violated as often (0.011) then expected (0.01). We can test the
hypothesis that α = 0.01 (or 1%) by comparing the likelihood that the sample has been generated by α

as opposed to its estimate α̂, which in this example is equal to 0.011. One way to test this hypothesis
is to define the event of a violation of VaR, that is Rt+1 ≤ V aRt+1, as a binomial random variable with
probability α that the event occurs. Since we have a total of T days and introducing the assumption
that violations are independent of each other, then the joint probability of having T1 violations (out of
T days) is

L(α, T1, T ) = αT1(1 − α)T
0

where T0 = T − T1. The hypothesis α = 0.01 can be tested by comparing this likelihood above at the
estimated α and at the theoretical value of 0.01 (more generally, if VaR is calculated at 95% then α is
0.05). This type of tests are called likelihood ratio tests and can be interpreted as the distance between
the theoretical value (i.e., using α = 0.01) of the likelihood of obtaining T1 violation in T days and the
likelihood based on the sample estimate α̂. The statistic and distribution of the test for Unconditional
Coverage (UC) are

UC = −2 ln
(

L(0.01, T1, T )
L(α̂, T1, T )

)
∼ χ2

1

where α̂ = T1/T and χ2
1 denotes the chi-square distribution with 1 degree-of-freedom. The critical values

at 1, 5, and 10% are 6.63, 3.84, and 2.71, respectively, and the null hypothesis α = 0.01 is rejected if
LRUC is larger than the critical value. In practice, the test statistic can be calculated as follows:

−2
[
T1 ln

(
0.01

α̂

)
+ T0 ln

(
0.99

1 − α̂

)]
In the example discussed above we have α̂ = 0.011, T1 = 77, and T is 6942. The test statistic is thus
UC = -2 * ( T1 * (log(0.01/alphahat))

+ (TT - T1) * log(0.99/(1-alphahat)))

Since 0.802 is smaller than 3.84 we do not reject the null hypothesis at 5% significance level that α = 0.01
and conclude that the risk model provides appropriate coverage.

While testing for coverage, we introduced the assumption that violations are independent of each other.
If this assumption fails to hold, then a violation in day t has the effect of increasing/decreasing the
probability of experiencing a violation in day t + 1, relative to its unconditional level. A situation in
which this might happen is during financial crises when markets enter a downward spiral which is likely
to lead to several consecutive days of violations and thus to the possibility of underestimating risk. The
empirical evaluation of this assumption requires the calculation of two probabilities: 1) the probability
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of having a violation in day t given that a violation occurred in day t − 1, and 2) the probability of
having a violation in day t given that no violation occurred the previous day. We denote the estimates
of these conditional probabilities as α̂1,1 and α̂0,1, respectively. They can be estimated from the data
by calculating T1,1 and T0,1 that represent the number of days in which a violation was preceded by a
violation and a no violation, respectively. In R we can determine these quantities as follows:
T11 = sum((lag(V,1)==1) & (V==1))
T01 = sum((lag(V,1)==0) & (V==1))

where we obtain that T0,1 = 77 and T1,1 = 0, with their sum equal to T1. Similarly, we can calculate
T1,0 and T0,0 and the estimates are NA and NA, respectively, that sum to T0. Since we look at violations
in two consecutive days we lose one observation and our total sample size is now T − 1 = 400. We can
then calculate the conditional probabilities of a violation in a day given that the previous day there was
no violation as α̂0,1 = T0,1/(T0,1 + T1,1) while the probability of a violation in two consecutive days,
that is, α̂1,1 = 1 − α̂0,1 = T1,1/(T0,1 + T1,1). Similarly, we can calculate α̂1,0 and α̂0,0. For the daily
S&P 500 introduced earlier, the estimates are α̂1,1 = 0 and α̂0,1 = 1, and α̂1,0 = NA and α̂0,0 = NA.
While we have an overall estimated probability of a violation of 1.1%, this probability is equal to 0%
after a day in which the risk model was violated and NA% following a day without a violation. Since
these probabilities are significantly different from each other, we should conclude that the violations are
not independent over time. To make this conclusion in statistical terms, we can statistically test the
hypothesis of independence of the violations by stating the null hypothesis as α0,1 = α1,1 = α which
can be tested using the same likelihood ratio approach discussed earlier. In this case, the statistic is
calculated as the ratio of the likelihood under independence, L(α̂, T1, T ), relative to the likelihood under
dependence, which we denote by L(α̂0,1, α̂1,1, T0,1, T1,1, T ) which is given by

L(α̂0,1, α̂1,1, T0,1, T1,1, T ) = α̂
T1,0
1,0 (1 − α̂1,0)T1,1 α̂

T0,1
0,1 (1 − α̂0,1)T0,0

the test statistic and distribution for the hypothesis of Independence (IND) in this case is

IND = −2 ln
(

L(α̂, T0, T )
L(α̂0,1, α̂1,1, T0,1, T1,1, T )

)
∼ χ2

1

and the critical values are the same as for the UC test. The numerator of the IND test is the likelihood in
the denominator of the UC test and it is based on the empirical estimate of α rather than the theoretical
value α. The value of the IND test statistic is NA which is smaller relative to the critical value at 5%
so that we do not reject the null hypothesis that the violations occur independently.

Finally, we might be interested in testing the hypothesis α0,1 = α1,1 = 0.01 which tests jointly the
independence of the violations as well as the coverage which should be equal to 1%. This test is referred
to as Conditional Coverage and the test statistic is given by the sum of the previous two test statistics,
that is, CC = IND + UC and it is distributed as a χ2

2. The critical values at 1, 5, and 10% in this case
are 9.21, 5.99, and 4.61, respectively.
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R commands

Exercises

1. Exercise 1
2. Exercise 2
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